Preprocessing for Outerplanar Vertex Deletion: An Elementary Kernel of Quartic Size

被引:0
|
作者
Huib Donkers
Bart M. P. Jansen
Michał Włodarczyk
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
来源
Algorithmica | 2022年 / 84卷
关键词
Fixed-parameter tractability; Kernelization; Outerplanar graphs; 05C10; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
In the F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document}-Minor-Free Deletion problem one is given an undirected graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{G}}$$\end{document}, an integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document}, and the task is to determine whether there exists a vertex set S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} of size at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document}, so that G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{G}}-{\varvec{S}}$$\end{document} contains no graph from the finite family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document} as a minor. It is known that whenever F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document} contains at least one planar graph, then F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document}-Minor-Free Deletion admits a polynomial kernel, that is, there is a polynomial-time algorithm that outputs an equivalent instance of size kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}^{{\varvec{\mathcal {O}}}{} {\textbf {(1)}}}$$\end{document} [Fomin, Lokshtanov, Misra, Saurabh; FOCS 2012]. However, this result relies on non-constructive arguments based on well-quasi-ordering and does not provide a concrete bound on the kernel size. We study the Outerplanar Deletion problem, in which we want to remove at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} vertices from a graph to make it outerplanar. This is a special case of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document}-Minor-Free Deletion for the family F={K4,K2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}} = \{{\varvec{K}}_{{\textbf {4}}}, {\varvec{K}}_{{{\textbf {2,3}}}}\}$$\end{document}. The class of outerplanar graphs is arguably the simplest class of graphs for which no explicit kernelization size bounds are known. By exploiting the combinatorial properties of outerplanar graphs we present elementary reduction rules decreasing the size of a graph. This yields a constructive kernel with O(k4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {O}}}({\varvec{k}}^{\textbf {4}})$$\end{document} vertices and edges. As a corollary, we derive that any minor-minimal obstruction to having an outerplanar deletion set of size k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} has O(k4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {O}}}({\varvec{k}}^{\textbf {4}})$$\end{document} vertices and edges.
引用
收藏
页码:3407 / 3458
页数:51
相关论文
共 26 条
  • [21] Approximation and Tidying—A Problem Kernel for s-Plex Cluster Vertex Deletion
    René van Bevern
    Hannes Moser
    Rolf Niedermeier
    Algorithmica, 2012, 62 : 930 - 950
  • [22] Preprocessing vertex-deletion problems: Characterizing graph properties by low-rank adjacencies
    Jansen B.M.P.
    de Kroon J.J.H.
    Journal of Computer and System Sciences, 2022, 126 : 59 - 79
  • [23] An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion
    Mamadou Moustapha Kanté
    Eun Jung Kim
    O-joung Kwon
    Christophe Paul
    Algorithmica, 2017, 79 : 66 - 95
  • [24] An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion
    Kante, Mamadou Moustapha
    Kim, Eun Jung
    Kwon, O-joung
    Paul, Christophe
    ALGORITHMICA, 2017, 79 (01) : 66 - 95
  • [25] Konig Deletion Sets and Vertex Covers above the Matching Size
    Mishra, Sounaka
    Raman, Venkatesh
    Saurabh, Saket
    Sikdar, Somnath
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 836 - +
  • [26] Approximation and Tidying-A Problem Kernel for s-Plex Cluster Vertex Deletion
    van Bevern, Rene
    Moser, Hannes
    Niedermeier, Rolf
    ALGORITHMICA, 2012, 62 (3-4) : 930 - 950