Preprocessing for Outerplanar Vertex Deletion: An Elementary Kernel of Quartic Size

被引:0
|
作者
Huib Donkers
Bart M. P. Jansen
Michał Włodarczyk
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
来源
Algorithmica | 2022年 / 84卷
关键词
Fixed-parameter tractability; Kernelization; Outerplanar graphs; 05C10; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
In the F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document}-Minor-Free Deletion problem one is given an undirected graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{G}}$$\end{document}, an integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document}, and the task is to determine whether there exists a vertex set S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{S}}$$\end{document} of size at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document}, so that G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{G}}-{\varvec{S}}$$\end{document} contains no graph from the finite family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document} as a minor. It is known that whenever F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document} contains at least one planar graph, then F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document}-Minor-Free Deletion admits a polynomial kernel, that is, there is a polynomial-time algorithm that outputs an equivalent instance of size kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}^{{\varvec{\mathcal {O}}}{} {\textbf {(1)}}}$$\end{document} [Fomin, Lokshtanov, Misra, Saurabh; FOCS 2012]. However, this result relies on non-constructive arguments based on well-quasi-ordering and does not provide a concrete bound on the kernel size. We study the Outerplanar Deletion problem, in which we want to remove at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} vertices from a graph to make it outerplanar. This is a special case of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}}$$\end{document}-Minor-Free Deletion for the family F={K4,K2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {F}}} = \{{\varvec{K}}_{{\textbf {4}}}, {\varvec{K}}_{{{\textbf {2,3}}}}\}$$\end{document}. The class of outerplanar graphs is arguably the simplest class of graphs for which no explicit kernelization size bounds are known. By exploiting the combinatorial properties of outerplanar graphs we present elementary reduction rules decreasing the size of a graph. This yields a constructive kernel with O(k4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {O}}}({\varvec{k}}^{\textbf {4}})$$\end{document} vertices and edges. As a corollary, we derive that any minor-minimal obstruction to having an outerplanar deletion set of size k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} has O(k4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mathcal {O}}}({\varvec{k}}^{\textbf {4}})$$\end{document} vertices and edges.
引用
收藏
页码:3407 / 3458
页数:51
相关论文
共 26 条
  • [1] Preprocessing for Outerplanar Vertex Deletion: An Elementary Kernel of Quartic Size
    Donkers, Huib
    Jansen, Bart M. P.
    Wlodarczyk, Michal
    ALGORITHMICA, 2022, 84 (11) : 3407 - 3458
  • [2] Preprocessing for outerplanar vertex deletion: An elementary kernel of quartic size
    Donkers, Huib
    Jansen, Bart M.P.
    Wlodarczyk, Michal
    Leibniz International Proceedings in Informatics, LIPIcs, 2021, 214
  • [3] A Quartic Kernel for Pathwidth-One Vertex Deletion
    Philip, Geevarghese
    Raman, Venkatesh
    Villanger, Yngve
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 196 - +
  • [4] Quadratic vertex kernel for split vertex deletion
    Agrawal, Akanksha
    Gupta, Sushmita
    Jain, Pallavi
    Krithika, R.
    THEORETICAL COMPUTER SCIENCE, 2020, 833 : 164 - 172
  • [5] Polynomial Kernel for Interval Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (02)
  • [6] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1383 - 1398
  • [7] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (01)
  • [8] A POLYNOMIAL KERNEL FOR PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1964 - 1976
  • [9] A Polynomial Kernel for PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    ALGORITHMS - ESA 2012, 2012, 7501 : 467 - 478
  • [10] A Polynomial Kernel for Bipartite Permutation Vertex Deletion
    Jan Derbisz
    Lawqueen Kanesh
    Jayakrishnan Madathil
    Abhishek Sahu
    Saket Saurabh
    Shaily Verma
    Algorithmica, 2022, 84 : 3246 - 3275