Analysis of Uranium Sorption in a Laboratory Column Experiment Using a Reactive Transport and Surface Complexation Model

被引:0
|
作者
Yousef Baqer
Steven Thornton
Douglas I. Stewart
Simon Norris
XiaoHui Chen
机构
[1] University of Leeds,School of Civil Engineering
[2] The University of Sheffield,Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering
[3] Nuclear Waste Services,undefined
来源
Transport in Porous Media | 2023年 / 149卷
关键词
PHREEQC; C-S-H; Alkaline; Advection–dispersion; Uranyl;
D O I
暂无
中图分类号
学科分类号
摘要
Sorption of uranyl (UO22+(UVI)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{UO}}_{2}^{2+} ({U}_{\mathrm{VI}})$$\end{document}) was found to strongly depend on the surface complexation model, with no significant removal of U_VI by precipitation or ion exchange process.The aluminol surface edges in kaolinite were shown to have a higher affinity for uranyl adsorption, while the hydrous ferric oxide edge on hematite adsorbed most of the uranyl ions.Uranium adsorption on the aluminol edge of kaolinite exceeds adsorption by the C-S-H phase. This result may reflect the lack of surface complexation parameters for C-S-H minerals.
引用
收藏
页码:423 / 452
页数:29
相关论文
共 50 条
  • [41] Sorption Testing and Generalized Composite Surface Complexation Models for Determining Uranium Sorption Parameters at a Proposed In-situ Recovery Site
    Johnson, Raymond H.
    Truax, Ryan A.
    Lankford, David A.
    Stone, James J.
    Mine Water and the Environment, 2016, 35 (04) : 435 - 446
  • [42] Undergraduate design of experiment laboratory on analysis and optimization of distillation column
    Narang, Anuj
    Ben-Zvi, Amos
    Afacan, Artin
    Sharp, David
    Shah, Sirish L.
    Huang, Biao
    EDUCATION FOR CHEMICAL ENGINEERS, 2012, 7 (04): : E187 - E195
  • [43] Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling
    Amos, Richard T.
    Mayer, K. Ulrich
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) : 5361 - 5367
  • [44] Uranium(VI) sorption on colloidal magnetite under anoxic environment:: Experimental study and surface complexation modelling
    Missana, T
    García-Gutiérrez, M
    Fernandez, V
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2003, 67 (14) : 2543 - 2550
  • [45] Analysis of a deep well recharge experiment by calibrating a reactive transport model with field data
    Saaltink, MW
    Ayora, C
    Stuyfzand, PJ
    Timmer, H
    JOURNAL OF CONTAMINANT HYDROLOGY, 2003, 65 (1-2) : 1 - 18
  • [46] Laboratory column experiments and transport modeling to evaluate retardation of uranium in an aquifer downgradient of a uranium in-situ recovery site
    Dangelmayr, Martin A.
    Reimus, Paul W.
    Wasserman, Naomi L.
    Punsal, Jesse J.
    Johnson, Raymond H.
    Clay, James T.
    Stone, James J.
    APPLIED GEOCHEMISTRY, 2017, 80 : 1 - 13
  • [47] SIMULATING THE MOVEMENT OF A REACTIVE SOLUTE THROUGH A SOIL LYSIMETER COLUMN USING A FUNCTIONAL TRANSPORT MODEL
    CORWIN, DL
    WAGGONER, BL
    RHOADES, JD
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 1992, A27 (07): : 1875 - 1913
  • [48] DETERMINATION OF THE CA2+-SORPTION CAPACITY OF QUARTZ SURFACE USING CA-45 AS TRACER - A COLUMN EXPERIMENT
    SCHAEFER, KW
    RADIOCHIMICA ACTA, 1991, 54 (01) : 47 - 51
  • [49] Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column: An experimental study
    Cheng, Tao
    Barnett, Mark O.
    Roden, Eric E.
    Zhunag, Jinling
    CHEMOSPHERE, 2007, 68 (07) : 1218 - 1223
  • [50] A reactive transport model to simulate uranium immobilization through pH manipulation
    Zhang, Fan
    Luo, W.
    Watson, D. B.
    Parker, J. C.
    Gu, B.
    Spalding, B. P.
    Jardine, P. M.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A1080 - A1080