Synthesis of ROMP Monomers Containing Metal–Metal Bonds

被引:0
|
作者
John D. Gilbertson
T. J. R. Weakley
Fusen Han
Jeffrey J. Wolcott
David R. Tyler
机构
[1] 1253 University of Oregon,Department of Chemistry
关键词
Metal–metal bond; ROMP; photochemically degradable polymer.;
D O I
暂无
中图分类号
学科分类号
摘要
Methods for the synthesis of cyclic monomers that have both metal–metal bonds and carbon–carbon double bonds are reported. Ring opening metathesis polymerization (ROMP) of these monomers would yield polymers that are photochemically degradable. The first method investigated involved substitution of Cp2Fe2(CO)4 by the bidentate phosphine ligand DPPEN (Ph2P \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}CH=CH–PPh2). Cp2Fe2(CO)2( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}-DPPEN) was synthesized and the X-ray crystal structure is reported but the molecule could not be polymerized by a ROMP method using Grubbs’s catalyst. The inability of this monomer to polymerize (or copolymerize with cyclooctatetraene) was attributed to the bulky phenyl rings being in close proximity to the C=C in the DPPEN ligand, which prevents coordination of the monomer to the catalyst. To decrease the steric interactions, the DPPBN ligand was synthesized (DPPBN=Ph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH=CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}PPh2). However, the reaction of DPPBN with Cp2Fe2(CO)4 yielded the product Cp2Fe2(CO)2( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}-1,2,4-triphos), where the 1,2,4-triphos ligand is a tridentate ligand formed by the formal additional of Ph2PH to DPPBN (1,2,4-triphos=Ph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH(PPh2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}PPh2). An X-ray structure of the Cp2Fe2(CO)2( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}-1,2,4-triphos) complex revealed that the 1,2,4-triphos ligand chelates exclusively through the two phosphorus atoms that are bridged by two carbon atoms. It is suggested that this structural feature may simply reflect the increased stability of the 6-membered ring over the 7- and 8-membered rings. The reactions of the Cp2Mo2(CO)6 and Cp2Mo2(CO)4 dimers with DPPBN were investigated next. Reactions of Cp2Mo2(CO)6 and Cp2Mo2(CO)4 with the DPPEN and DPPBN ligands resulted in the disproportionation of the dimers. The X-ray crystal structure of [CpMo(CO)2(DPPEN)][CpMo(CO)3] was determined and is reported. The CpMo(CO)(DPPEN)Cl complex was formed when these same reactions were carried out in the presence of CH2Cl2. The X-ray crystal structure of this molecule is also reported.
引用
收藏
相关论文
共 50 条
  • [31] THE ELECTRONIC-STRUCTURE OF ORGANOACTINIDE COMPLEXES CONTAINING METAL METAL BONDS
    BURSTEN, BE
    JOURNAL OF THE LESS-COMMON METALS, 1986, 126 : 416 - 416
  • [32] STRUCTURES OF 2 COMPOUNDS CONTAINING STRONG METAL-TO-METAL BONDS
    BENNETT, MJ
    COTTON, FA
    FOXMAN, BM
    STOKELY, PF
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1967, 89 (11) : 2759 - &
  • [33] Preparation of Photodegradable Oligomers Containing Metal–Metal Bonds Using ADMET
    Ginger V. Shultz
    Orion B. Berryman
    Lev N. Zakharov
    David R. Tyler
    Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18 : 149 - 154
  • [34] THERMAL REORGANISATION OF COMPOUNDS CONTAINING METAL-METAL BONDS - INOR
    GEORGE, TA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1970, (SEP): : 116 - &
  • [35] COMPLEXES CONTAINING COBALT-SILICON METAL-METAL BONDS
    ARCHER, NJ
    HASZELDINE, RN
    PARISH, RV
    JOURNAL OF THE CHEMICAL SOCIETY D-CHEMICAL COMMUNICATIONS, 1971, (11): : 524 - +
  • [36] ISOLATION AND REACTIVITY OF METAL-CONTAINING MONOMERS .10. DISSOCIATION OF METAL-CONTAINING MONOMERS IN WATER AND ORGANIC-SOLVENTS
    SELENOVA, BS
    DZHARDIMALIEVA, GI
    BAISHIGANOV, EB
    EFIMOV, ON
    POMOGAILO, AD
    BULLETIN OF THE ACADEMY OF SCIENCES OF THE USSR DIVISION OF CHEMICAL SCIENCE, 1989, 38 (05): : 927 - 930
  • [37] Synthesis and reactivity of metal-containing monomers 72. Monomeric and polymeric metal acetylenecarboxylates and their nanocomposite products: synthesis, structures, and properties
    V. A. Shershnev
    G. I. Dzhardimalieva
    D. P. Kiryukhin
    V. A. Zhorin
    A. D. Pomogailo
    Russian Chemical Bulletin, 2013, 62 : 1649 - 1658
  • [38] Synthesis and reactivity of metal-containing monomers - 49. Synthesis and structure of low-valence transition metal acrylates and their polymers
    Dzhardimalieva, GI
    Ivleva, IN
    Shul'ga, YM
    Frolov, EN
    Pomogailo, AD
    RUSSIAN CHEMICAL BULLETIN, 1998, 47 (06) : 1113 - 1117
  • [39] Synthesis and reactivity of metal-containing monomers 49. Synthesis and structure of low-valence transition metal acrylates and their polymers
    G. I. Dzhardimalieva
    I. N. Ivleva
    Yu. M. Shul'ga
    E. N. Frolov
    A. D. Pomogailo
    Russian Chemical Bulletin, 1998, 47 : 1113 - 1117
  • [40] Synthesis and reactivity of metal-containing monomers 72. Monomeric and polymeric metal acetylenecarboxylates and their nanocomposite products: synthesis, structures, and properties
    Shershnev, V. A.
    Dzhardimalieva, G. I.
    Kiryukhin, D. P.
    Zhorin, V. A.
    Pomogailo, A. D.
    RUSSIAN CHEMICAL BULLETIN, 2013, 62 (07) : 1649 - 1658