Synthesis of ROMP Monomers Containing Metal–Metal Bonds

被引:0
|
作者
John D. Gilbertson
T. J. R. Weakley
Fusen Han
Jeffrey J. Wolcott
David R. Tyler
机构
[1] 1253 University of Oregon,Department of Chemistry
关键词
Metal–metal bond; ROMP; photochemically degradable polymer.;
D O I
暂无
中图分类号
学科分类号
摘要
Methods for the synthesis of cyclic monomers that have both metal–metal bonds and carbon–carbon double bonds are reported. Ring opening metathesis polymerization (ROMP) of these monomers would yield polymers that are photochemically degradable. The first method investigated involved substitution of Cp2Fe2(CO)4 by the bidentate phosphine ligand DPPEN (Ph2P \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}CH=CH–PPh2). Cp2Fe2(CO)2( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}-DPPEN) was synthesized and the X-ray crystal structure is reported but the molecule could not be polymerized by a ROMP method using Grubbs’s catalyst. The inability of this monomer to polymerize (or copolymerize with cyclooctatetraene) was attributed to the bulky phenyl rings being in close proximity to the C=C in the DPPEN ligand, which prevents coordination of the monomer to the catalyst. To decrease the steric interactions, the DPPBN ligand was synthesized (DPPBN=Ph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH=CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}PPh2). However, the reaction of DPPBN with Cp2Fe2(CO)4 yielded the product Cp2Fe2(CO)2( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}-1,2,4-triphos), where the 1,2,4-triphos ligand is a tridentate ligand formed by the formal additional of Ph2PH to DPPBN (1,2,4-triphos=Ph \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH(PPh2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}CH \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}{-}$$\end{document}PPh2). An X-ray structure of the Cp2Fe2(CO)2( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}-1,2,4-triphos) complex revealed that the 1,2,4-triphos ligand chelates exclusively through the two phosphorus atoms that are bridged by two carbon atoms. It is suggested that this structural feature may simply reflect the increased stability of the 6-membered ring over the 7- and 8-membered rings. The reactions of the Cp2Mo2(CO)6 and Cp2Mo2(CO)4 dimers with DPPBN were investigated next. Reactions of Cp2Mo2(CO)6 and Cp2Mo2(CO)4 with the DPPEN and DPPBN ligands resulted in the disproportionation of the dimers. The X-ray crystal structure of [CpMo(CO)2(DPPEN)][CpMo(CO)3] was determined and is reported. The CpMo(CO)(DPPEN)Cl complex was formed when these same reactions were carried out in the presence of CH2Cl2. The X-ray crystal structure of this molecule is also reported.
引用
收藏
相关论文
共 50 条
  • [1] Synthesis of ROMP monomers containing metal-metal bonds
    Gilbertson, John D.
    Weakley, T. J. R.
    Han, Fusen
    Wolcott, Jeffrey J.
    Tyler, David R.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2005, 15 (04) : 439 - 446
  • [2] Synthesis and ROMP of metal nanocluster containing norbornene derivatives
    Wynne, JH
    Lloyd, CT
    Bullock, SE
    Cozzens, RF
    NANOPARTICULATE MATERIALS, 2002, 704 : 301 - 305
  • [3] The Polymerization of Metal-Containing Vinylic Monomers of Iron and Tungsten with Metal–Carbon σ Bonds
    Selwyn F. Mapolie
    John R. Moss
    Gregory S. Smith
    Journal of Inorganic and Organometallic Polymers, 1997, 7 : 233 - 250
  • [4] The polymerization of metal-containing vinylic monomers of iron and tungsten with metal-carbon σ bonds
    Mapolie, SF
    Moss, JR
    Smith, GS
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS, 1997, 7 (04): : 233 - 250
  • [5] ADVANCES IN THE SYNTHESIS AND POLYMERIZATION OF METAL-CONTAINING MONOMERS
    POMOGAILO, AD
    SAVOSTYANOV, VS
    JOURNAL OF MACROMOLECULAR SCIENCE-REVIEWS IN MACROMOLECULAR CHEMISTRY AND PHYSICS, 1985, C25 (03): : 375 - 479
  • [6] ADVANCES IN THE SYNTHESIS AND POLYMERIZATION OF METAL-CONTAINING MONOMERS.
    Pomogailo, A.D.
    Savostyanov, V.S.
    1600, (C25):
  • [7] A NEW SYNTHESIS OF METAL - METAL BONDS
    NYHOLM, RS
    VRIEZE, K
    CHEMISTRY & INDUSTRY, 1964, (08) : 318 - 319
  • [8] SYNTHESIS OF EARLY TRANSITION-METAL COMPLEXES CONTAINING METAL-SILICON BONDS
    CARDOSO, AM
    CLARK, RJH
    MOORHOUSE, S
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1980, 186 (02) : 241 - 245
  • [9] Synthesis and reactivity of metal-containing monomers 52.: Synthesis and structure of TiIV-containing optically active monomers
    Klabunovskii, EI
    Karpeiskaya, EI
    Gzhardimalieva, GI
    Golubeva, ND
    Pomogailo, AD
    RUSSIAN CHEMICAL BULLETIN, 1999, 48 (09) : 1717 - 1721
  • [10] SYNTHESIS OF COMPLEXES CONTAINING TRANSITION METAL-INDIUM BONDS
    HSIEH, ATT
    MAYS, MJ
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1972, 37 (01) : 9 - &