The average size of Ramanujan sums over cubic number fields

被引:0
|
作者
Jing Ma
Huayan Sun
Wenguang Zhai
机构
[1] Jilin University,School of Mathematics
[2] China University of Mining and Technology,Department of Mathematics
来源
关键词
Ramanujan sum; Cubic field; Exponential sum;
D O I
暂无
中图分类号
学科分类号
摘要
Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{K}$$\end{document} be a cubic number field. In this paper, we study the Ramanujan sums cJ(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\mathcal {J}}(\mathcal {I})$$\end{document}, where I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} and J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {J}$$\end{document} are integral ideals in OK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_\textit{K}$$\end{document}. The asymptotic behaviour of sums of cJ(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\mathcal {J}}(\mathcal {I})$$\end{document} over both I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} and J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {J}$$\end{document} is investigated.
引用
收藏
页码:215 / 231
页数:16
相关论文
共 50 条
  • [31] On the cyclic torsion of elliptic curves over cubic number fields
    Wang, Jian
    JOURNAL OF NUMBER THEORY, 2018, 183 : 291 - 308
  • [32] The number of solutions of cubic diagonal equations over finite fields
    Hu, Shuangnian
    Feng, Rongquan
    AIMS MATHEMATICS, 2023, 8 (03): : 6375 - 6388
  • [33] Stark's conjecture over complex cubic number fields
    Dummit, DS
    Tangedal, BA
    Van Wamelen, PB
    MATHEMATICS OF COMPUTATION, 2004, 73 (247) : 1525 - 1546
  • [34] THE AVERAGE NUMBER OF SUBGROUPS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Perret-Gentil, Corentin
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (03): : 781 - 822
  • [35] The number of solutions of diagonal cubic equations over finite fields
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 80
  • [36] On the number of zeros of diagonal cubic forms over finite fields
    Hong, Shaofang
    Zhu, Chaoxi
    FORUM MATHEMATICUM, 2021, 33 (03) : 697 - 708
  • [37] Kloosterman sums on number fields
    Pacharoni, I
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (08) : 2653 - 2667
  • [38] On Poincare sums for number fields
    Ono, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (04) : 65 - 68
  • [39] CUBIC FORMS OVER IMAGINARY QUADRATIC NUMBER FIELDS AND PAIRS OF RATIONAL CUBIC FORMS
    Bernert, Christian
    Hochfilzer, Leonhard
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (04) : 2549 - 2578
  • [40] RAMANUJAN'S TAU FUNCTION AS SUMS OVER PARTITIONS
    Goran-Dumitru, Andreea
    Merca, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (03): : 69 - 80