The average size of Ramanujan sums over cubic number fields

被引:0
|
作者
Jing Ma
Huayan Sun
Wenguang Zhai
机构
[1] Jilin University,School of Mathematics
[2] China University of Mining and Technology,Department of Mathematics
来源
关键词
Ramanujan sum; Cubic field; Exponential sum;
D O I
暂无
中图分类号
学科分类号
摘要
Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{K}$$\end{document} be a cubic number field. In this paper, we study the Ramanujan sums cJ(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\mathcal {J}}(\mathcal {I})$$\end{document}, where I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} and J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {J}$$\end{document} are integral ideals in OK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_\textit{K}$$\end{document}. The asymptotic behaviour of sums of cJ(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\mathcal {J}}(\mathcal {I})$$\end{document} over both I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} and J\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {J}$$\end{document} is investigated.
引用
收藏
页码:215 / 231
页数:16
相关论文
共 50 条
  • [1] The average size of Ramanujan sums over cubic number fields
    Ma, Jing
    Sun, Huayan
    Zhai, Wenguang
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (1) : 215 - 231
  • [2] The average size of Ramanujan sums over cubic number fields
    Ma, Jing
    Sun, Huayan
    Zhai, Wenguang
    arXiv, 2021,
  • [3] The average size of Ramanujan sums over quadratic number fields
    Zhai, Wenguang
    RAMANUJAN JOURNAL, 2021, 56 (03): : 953 - 969
  • [4] The average size of Ramanujan sums over quadratic number fields
    Werner Georg Nowak
    Archiv der Mathematik, 2012, 99 : 433 - 442
  • [5] The average size of Ramanujan sums over quadratic number fields
    Wenguang Zhai
    The Ramanujan Journal, 2021, 56 : 953 - 969
  • [6] The average size of Ramanujan sums over quadratic number fields
    Nowak, Werner Georg
    ARCHIV DER MATHEMATIK, 2012, 99 (05) : 433 - 442
  • [7] On the distribution of Ramanujan sums over number fields
    Sneha Chaubey
    Shivani Goel
    The Ramanujan Journal, 2023, 61 : 813 - 837
  • [8] On the distribution of Ramanujan sums over number fields
    Chaubey, Sneha
    Goel, Shivani
    RAMANUJAN JOURNAL, 2023, 61 (03): : 813 - 837
  • [9] On the polynomial Ramanujan sums over finite fields
    Zhiyong Zheng
    The Ramanujan Journal, 2018, 46 : 863 - 898
  • [10] On the polynomial Ramanujan sums over finite fields
    Zheng, Zhiyong
    RAMANUJAN JOURNAL, 2018, 46 (03): : 863 - 898