Modified Macdonald Polynomials and Integrability

被引:0
|
作者
Alexandr Garbali
Michael Wheeler
机构
[1] University of Melbourne,ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive combinatorial formulae for the modified Macdonald polynomial Hλ(x;q,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\lambda }(x;q,t)$$\end{document} using coloured paths on a square lattice with quasi-cylindrical boundary conditions. The derivation is based on an integrable model associated to the quantum group of Uq(sln+1)^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{q}(\widehat{sl_{n+1})}$$\end{document}.
引用
收藏
页码:1809 / 1876
页数:67
相关论文
共 50 条
  • [31] On form factors and Macdonald polynomials
    Michael Lashkevich
    Yaroslav Pugai
    Journal of High Energy Physics, 2013
  • [32] Multi-Macdonald polynomials
    Gonzalez, Camilo
    Lapointe, Luc
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [33] Factorizations of Symmetric Macdonald Polynomials
    Colmenarejo, Laura
    Dunkl, Charles F.
    Luque, Jean-Gabriel
    SYMMETRY-BASEL, 2018, 10 (11):
  • [34] Factorization formulas for Macdonald polynomials
    Descouensa, Francois
    Morita, Hideaki
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (02) : 395 - 410
  • [35] A Summation Formula for Macdonald Polynomials
    Jan de Gier
    Michael Wheeler
    Letters in Mathematical Physics, 2016, 106 : 381 - 394
  • [36] Determinantal expressions for Macdonald polynomials
    Lapointe, L
    Lascoux, A
    Morse, J
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (18) : 957 - 978
  • [37] TABLEAUX FORMULAS FOR MACDONALD POLYNOMIALS
    Bergeron, Francois
    Haiman, Mark
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (04) : 833 - 852
  • [38] On factorization of generalized Macdonald polynomials
    Ya. Kononov
    A. Morozov
    The European Physical Journal C, 2016, 76
  • [39] Gauge Theories and Macdonald Polynomials
    Gadde, Abhijit
    Rastelli, Leonardo
    Razamat, Shlomo S.
    Yan, Wenbin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (01) : 147 - 193
  • [40] Colorful combinatorics and Macdonald polynomials
    Kaliszewski, Ryan
    Morse, Jennifer
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 81 : 354 - 377