Modified Macdonald Polynomials and Integrability

被引:0
|
作者
Alexandr Garbali
Michael Wheeler
机构
[1] University of Melbourne,ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We derive combinatorial formulae for the modified Macdonald polynomial Hλ(x;q,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\lambda }(x;q,t)$$\end{document} using coloured paths on a square lattice with quasi-cylindrical boundary conditions. The derivation is based on an integrable model associated to the quantum group of Uq(sln+1)^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{q}(\widehat{sl_{n+1})}$$\end{document}.
引用
收藏
页码:1809 / 1876
页数:67
相关论文
共 50 条
  • [1] Modified Macdonald Polynomials and Integrability
    Garbali, Alexandr
    Wheeler, Michael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (03) : 1809 - 1876
  • [2] Macdonald polynomials and algebraic integrability
    Chalykh, OA
    ADVANCES IN MATHEMATICS, 2002, 166 (02) : 193 - 259
  • [3] Combinatorial formula for Macdonald polynomials and generic Macdonald polynomials
    Andrei Okounkov
    Transformation Groups, 2003, 8 : 293 - 305
  • [5] Difference Equations and Pieri Formulas for G2 Type Macdonald Polynomials and Integrability
    Jan Felipe van Diejen
    Masahiko Ito
    Letters in Mathematical Physics, 2008, 86 : 229 - 248
  • [6] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Sylvie Corteel
    Jim Haglund
    Olya Mandelshtam
    Sarah Mason
    Lauren Williams
    Selecta Mathematica, 2022, 28
  • [7] Compact formulas for Macdonald polynomials and quasisymmetric Macdonald polynomials
    Corteel, Sylvie
    Haglund, Jim
    Mandelshtam, Olya
    Mason, Sarah
    Williams, Lauren
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02):
  • [8] Difference Equations and Pieri Formulas for G2 Type Macdonald Polynomials and Integrability
    Felipe van Diejen, Jan
    Ito, Masahiko
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 86 (2-3) : 229 - 248
  • [9] Modified Macdonald polynomials and the multispecies zero range process: II
    Ayyer, Arvind
    Mandelshtam, Olya
    Martin, James B.
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (02)
  • [10] Nonsemisimple Macdonald polynomials
    Cherednik, Ivan
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 427 - 569