Non-simple Purely Infinite Steinberg Algebras with Applications to Kumjian–Pask Algebras

被引:0
|
作者
Hossein Larki
机构
[1] Shahid Chamran University of Ahvaz,Department of Mathematics, Faculty of Mathematical Sciences and Computer
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Purely infinite ring; Groupoid; Steinberg algebra; Higher-rank grph; Kumjian–Pask algebra; 16S60; 46L06;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize properly purely infinite Steinberg algebras AK(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_K({\mathcal {G}})$$\end{document} for strongly effective, ample Hausdorff groupoids G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document}. As an application, we show that the notions of pure infiniteness and proper pure infiniteness are equivalent for the Kumjian–Pask algebra KPK(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {KP}_K(\Lambda )$$\end{document} in case Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} is a strongly aperiodic k-graph. In particular, for unital cases, we give simple graph-theoretic criteria for the (proper) pure infiniteness of KPK(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {KP}_K(\Lambda )$$\end{document}. Furthermore, since the complex Steinberg algebra AC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\mathbb {C}}({\mathcal {G}})$$\end{document} is a dense subalgebra of the reduced groupoid C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra Cr∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*_r({\mathcal {G}})$$\end{document}, we focus on the problem that “when does the proper pure infiniteness of AC(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\mathbb {C}}({\mathcal {G}})$$\end{document} imply that of Cr∗(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*_r({\mathcal {G}})$$\end{document} in the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-sense?”. In particular, we show that if the Kumjian–Pask algebra KPC(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {KP}_{\mathbb {C}}(\Lambda )$$\end{document} is purely infinite, then so is C∗(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*(\Lambda )$$\end{document} in the sense of Kirchberg–Rørdam.
引用
收藏
相关论文
共 50 条
  • [21] COMPLEX KUMJIAN-PASK ALGEBRAS OF 2-GRAPHS
    Yusnitha, Isnie
    Rosjanuardi, Rizky
    PROCEEDINGS OF INTERNATIONAL SEMINAR ON MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS 2015), 2016, 1708
  • [22] Purely infinite simple C*-algebras that are principal groupoid C*-algebras
    Brown, Jonathan H.
    Clark, Lisa Orloff
    Sierakowski, Adam
    Sims, Aidan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) : 213 - 234
  • [23] Unital extensions of AF-algebras by purely infinite simple algebras
    Liu, Junping
    Wei, Changguo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (04) : 989 - 1001
  • [24] Unital extensions of AF-algebras by purely infinite simple algebras
    Junping Liu
    Changguo Wei
    Czechoslovak Mathematical Journal, 2014, 64 : 989 - 1001
  • [25] PURELY INFINITE CORONA ALGEBRAS OF SIMPLE C*-ALGEBRAS WITH REAL RANK ZERO
    Kucerovsky, Dan
    Perera, Francesc
    JOURNAL OF OPERATOR THEORY, 2011, 65 (01) : 131 - 144
  • [26] THE CLASSIFICATION OF REAL PURELY INFINITE SIMPLE C*-ALGEBRAS
    Boersema, Jeffrey L.
    Ruiz, Efren
    Stacey, P. J.
    DOCUMENTA MATHEMATICA, 2011, 16 : 619 - 655
  • [27] Purely Infinite Simple Ultragraph Leavitt Path Algebras
    Nam, T. G.
    Nam, N. D.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [28] Weak semiprojectivity in purely infinite simple C*-algebras
    Lin, Huaxin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (02): : 343 - 371
  • [29] Purely Infinite Simple Ultragraph Leavitt Path Algebras
    T. G. Nam
    N. D. Nam
    Mediterranean Journal of Mathematics, 2022, 19
  • [30] INDUCED IDEALS AND PURELY INFINITE SIMPLE TOEPLITZ ALGEBRAS
    Xu, Qingxiang
    JOURNAL OF OPERATOR THEORY, 2009, 62 (01) : 33 - 64