Type II Blow-up in the 5-dimensional Energy Critical Heat Equation

被引:0
|
作者
Manuel del Pino
Monica Musso
Jun Cheng Wei
机构
[1] University of Bath,Department of Mathematical Sciences
[2] Universidad de Chile,Departamento de Ingeniería Matemática
[3] Universidad Católica de Chile,CMM
[4] University of British Columbia,Departamento de Matemáticas
关键词
Singularity formation; bubbling phenomena; critical parabolic equations; 35K58; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the energy critical heat equation {ut=Δu+|u|4n−2uinRn×(0,T)u(⋅,0)=u0inRn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{cases}u_t ={\Delta}u+|u|^\frac{4}{n-2}u\;\;\;\text{in}\;\mathbb{R}^n\times(0,T)\\u(\centerdot,0)=u_0\;\;\;\text{in}\;\mathbb{R}^n\end{cases}$$\end{document} in dimension n = 5. More precisely we find that for given points q1,q2,...,qk and any sufficiently small T > 0 there is an initial condition u0 such that the solution u(x,t) of (0.1) blows-up at exactly those k points with rates type II, namely with absolute size ~(T-t)-α for α > 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}. The blow-up profile around each point is of bubbling type, in the form of sharply scaled Aubin–Talenti bubbles.
引用
收藏
页码:1027 / 1042
页数:15
相关论文
共 50 条
  • [21] Blow-up on the boundary for the heat equation
    Marek Fila
    Ján Filo
    Gary M. Lieberman
    Calculus of Variations and Partial Differential Equations, 2000, 10 : 85 - 99
  • [22] Blow-up on the boundary for the heat equation
    Fila, M
    Filo, J
    Lieberman, GM
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (01) : 85 - 99
  • [23] Infinite time blow-up for critical heat equation with drift terms
    Chunhua Wang
    Juncheng Wei
    Suting Wei
    Yifu Zhou
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [24] Global solution and blow-up of critical heat equation with nonlocal interaction
    Yang, Minbo
    Zhang, Jian
    FORUM MATHEMATICUM, 2025,
  • [25] Finite time blow-up for the fractional critical heat equation in Rn
    Chen, Guoyuan
    Wei, Juncheng
    Zhou, Yifu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
  • [26] Infinite time blow-up for the fractional heat equation with critical exponent
    Monica Musso
    Yannick Sire
    Juncheng Wei
    Youquan Zheng
    Yifu Zhou
    Mathematische Annalen, 2019, 375 : 361 - 424
  • [27] Infinite time blow-up for the fractional heat equation with critical exponent
    Musso, Monica
    Sire, Yannick
    Wei, Juncheng
    Zheng, Youquan
    Zhou, Yifu
    MATHEMATISCHE ANNALEN, 2019, 375 (1-2) : 361 - 424
  • [28] Infinite time blow-up for critical heat equation with drift terms
    Wang, Chunhua
    Wei, Juncheng
    Wei, Suting
    Zhou, Yifu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
  • [29] On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation
    Collot, Charles
    Raphael, Pierre
    Szeftel, Jeremie
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 260 (1255) : V - +
  • [30] LP-ENERGY AND BLOW-UP FOR A SEMILINEAR HEAT-EQUATION
    WEISSLER, FB
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 545 - 551