Approximation algorithms for solving the line-capacitated minimum Steiner tree problem

被引:0
|
作者
Jianping Li
Wencheng Wang
Junran Lichen
Suding Liu
Pengxiang Pan
机构
[1] Yunnan University,Department of Mathematics
[2] Chinese Academy of Sciences,Institute of Applied Mathematics, Academy of Mathematics and Systems Science
[3] School of Mathematics and Physics,undefined
[4] Beijing University of Chemical Technology,undefined
来源
关键词
Combinatorial optimization; Locations of lines; Line-capacitated Steiner trees; Approximation algorithms; Exact algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we address the line-capacitated minimum Steiner tree problem (the Lc-MStT problem, for short), which is a variant of the (Euclidean) capacitated minimum Steiner tree problem and defined as follows. Given a set X={r1,r2,…,rn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{r_{1},r_{2},\ldots , r_{n}\}$$\end{document} of n terminals in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document}, a demand function d:X→N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d:X \rightarrow {\mathbb {N}}$$\end{document} and a positive integer C, we are asked to determine the location of a line l and a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} to interconnect these n terminals in X and at least one point located on this line l such that the total demand of terminals in each maximal subtree (of Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document}) connected to the line l, where the terminals in such maximal subtree are all located at the same side of this line l, does not exceed the bound C. The objective is to minimize total weight ∑e∈Tlw(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{e\in T_l}w(e)$$\end{document} of such a Steiner tree Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_l$$\end{document} among all line-capacitated Steiner trees mentioned-above, where weight w(e)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(e)=0$$\end{document} if two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document} are located on the line l and otherwise weight w(e) is the Euclidean distance between two endpoints of that edge e∈Tl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in T_l$$\end{document}. In addition, when this line l is as an input in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^2$$\end{document} and ∑r∈Xd(r)≤C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{r\in X} d(r) \le C$$\end{document} holds, we refer to this version as the 1-line-fixed minimum Steiner tree problem (the 1Lf-MStT problem, for short). We obtain three main results. (1) Given a ρst\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{st}$$\end{document}-approximation algorithm to solve the Euclidean minimum Steiner tree problem and a ρ1Lf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{1Lf}$$\end{document}-approximation algorithm to solve the 1Lf-MStT problem, respectively, we design a (ρstρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{st}\rho _{1Lf}+2)$$\end{document}-approximation algorithm to solve the Lc-MStT problem. (2) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is less than C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, we provide a (ρ1Lf+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\rho _{1Lf}+2)$$\end{document}-approximation algorithm to resolve the Lc-MStT problem. (3) Whenever demand of each terminal r∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in X$$\end{document} is at least C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{C}{2}$$\end{document}, using the Edmonds’ algorithm to solve the minimum weight perfect matching as a subroutine, we present an exact algorithm in polynomial time to resolve the Lc-MStT problem.
引用
收藏
页码:687 / 714
页数:27
相关论文
共 50 条
  • [21] SOLVING THE GRAPHICAL STEINER TREE PROBLEM USING GENETIC ALGORITHMS
    KAPSALIS, A
    RAYWARDSMITH, VJ
    SMITH, GD
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1993, 44 (04) : 397 - 406
  • [22] Improved approximation algorithms for the Quality of Service Steiner Tree Problem
    Karpinski, M
    Mandoiu, II
    Olshevsky, A
    Zelikovsky, A
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 401 - 411
  • [23] A series of approximation algorithms for the acyclic directed Steiner tree problem
    Zelikovsky, A
    ALGORITHMICA, 1997, 18 (01) : 99 - 110
  • [24] A series of approximation algorithms for the acyclic directed steiner tree problem
    A. Zelikovsky
    Algorithmica, 1997, 18 : 99 - 110
  • [25] A construction heuristic for the capacitated Steiner tree problem
    Van den Eynde, Simon
    Audenaert, Pieter
    Colle, Didier
    Pickavet, Mario
    PLOS ONE, 2022, 17 (06):
  • [26] Approximation algorithms for capacitated partial inverse maximum spanning tree problem
    Xianyue Li
    Zhao Zhang
    Ruowang Yang
    Heping Zhang
    Ding-Zhu Du
    Journal of Global Optimization, 2020, 77 : 319 - 340
  • [27] Approximation algorithms for capacitated partial inverse maximum spanning tree problem
    Li, Xianyue
    Zhang, Zhao
    Yang, Ruowang
    Zhang, Heping
    Du, Ding-Zhu
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 77 (02) : 319 - 340
  • [29] Devolutionary genetic algorithms with application to the minimum labeling Steiner tree problem
    Nassim Dehouche
    Evolving Systems, 2018, 9 : 157 - 168
  • [30] A Memory Adaptive Reasoning Technique for Solving the Capacitated Minimum Spanning Tree Problem
    R. Patterson
    H. Pirkul
    E. Rolland
    Journal of Heuristics, 1999, 5 : 159 - 180