Ternary six-point interpolating subdivision scheme

被引:9
|
作者
Faheem K. [1 ]
Mustafa G. [1 ]
机构
[1] Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur
关键词
Continuity; Interpolating subdivision scheme; Laurent polynomial; Shape parameter; Smoothness;
D O I
10.1134/S1995080208030062
中图分类号
学科分类号
摘要
We present ternary six-point interpolating subdivision scheme with one shape parameter for curve design. The behavior of the limit curve defined by the scheme is analyzed in terms of the Laurent polynomial and attains C2 degree of smoothness. © 2008 MAIK Nauka.
引用
收藏
页码:153 / 163
页数:10
相关论文
共 50 条
  • [31] A classification of the six-point prime metrics
    Koolen, J
    Moulton, V
    Tönges, U
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (06) : 815 - 829
  • [32] A six-point condition for ordinal matrices
    Kearney, PE
    JOURNAL OF COMPUTATIONAL BIOLOGY, 1997, 4 (02) : 143 - 156
  • [33] Differentiability of a 4-point ternary subdivision scheme and its application
    Zheng, Hongchan
    Zhao, Hongxing
    Ye, Zhenglin
    Zhou, Min
    IMECS 2006: International Multiconference of Engineers and Computer Scientists, 2006, : 231 - 236
  • [34] An interpolating 6-point C2 non-stationary subdivision scheme
    Daniel, Sunita
    Shunmugaraj, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (01) : 164 - 172
  • [35] A Family of 5-Point Nonlinear Ternary Interpolating Subdivision Schemes with C-2 Smoothness
    Aslam, Muhammad
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2018, 23 (02)
  • [36] Ecological effects of ranching: A six-point critique
    Freilich, JE
    Emlen, JM
    Duda, JJ
    Freeman, DC
    Cafaro, PJ
    BIOSCIENCE, 2003, 53 (08) : 759 - 765
  • [37] Convexity and Monotonicity Preservation of Ternary 4-Point Approximating Subdivision Scheme
    Akram, Ghazala
    Khan, M. Atta Ullah
    Gobithaasan, R. U.
    Sadaf, Maasoomah
    Abbas, Muhammad
    Araci, Serkan
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [38] Fractal generation using ternary 5-point interpolatory subdivision scheme
    Siddiqi, Shahid S.
    Siddiqui, Saima
    Ahmad, Nadeem
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 402 - 411
  • [39] Fractal Behavior of a Ternary 4-Point Rational Interpolation Subdivision Scheme
    Peng, Kaijun
    Tan, Jieqing
    Li, Zhiming
    Zhang, Li
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2018, 23 (04)
  • [40] Continuity and error estimate of 4-point ternary stationary subdivision scheme
    Institute of Mathematics, Fudan University, Shanghai 200433, China
    不详
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao, 2006, 1 (128-136):