Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes

被引:0
|
作者
Yang Li
Shixin Zhu
Yanhui Zhang
机构
[1] Hefei University of Technology,School of Mathematics
关键词
Generalized Reed–Solomon code; QECC; EAQECC; MDS code; Hermitian self-orthogonal code; 94B05; 12E10;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum distance separable (MDS) quantum error-correcting codes (QECCs) and MDS entanglement-assisted QECCs (EAQECCs) play significant roles in quantum information theory. In this paper, we construct several new families of MDS QECCs and MDS EAQECCs by utilizing Hermitian self-orthogonal generalized Reed–Solomon codes. These newly obtained MDS QECCs contain some known classes of MDS QECCs as subclasses and some of them have larger minimum distance. In addition, many q-ary MDS QECCs and MDS EAQECCs in our constructions have length exceeding q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} and minimum distance surpassing q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}+1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Orthogonal designs and MDS self-dual codes
    Harada, Masaaki
    Kharaghani, Hadi
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 57 - 67
  • [32] Quantum Stabilizer Codes Construction from Hermitian Self-Orthogonal Codes over GF(4)
    Duc Manh Nguyen
    Kim, Sunghwan
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2018, 20 (03) : 309 - 315
  • [33] Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes
    Jin, Lingfei
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (08) : 5484 - 5489
  • [34] GENERIC CONSTRUCTIONS OF MDS EUCLIDEAN SELF-DUAL CODES VIA GRS CODES
    Huang, Ziteng
    Fang, Weijun
    Fu, Fang-Wei
    Li, Fengting
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (06) : 1453 - 1467
  • [35] Three families of self-orthogonal codes and their application in optimal quantum codes
    Li, Dexiang
    Heng, Ziling
    Li, Chengju
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [36] MDS, Hermitian almost MDS, and Gilbert–Varshamov quantum codes from generalized monomial-Cartesian codes
    Beatriz Barbero-Lucas
    Fernando Hernando
    Helena Martín-Cruz
    Gary McGuire
    Quantum Information Processing, 23
  • [37] MDS, Hermitian almost MDS, and Gilbert-Varshamov quantum codes from generalized monomial-Cartesian codes
    Barbero-Lucas, Beatriz
    Hernando, Fernando
    Martin-Cruz, Helena
    McGuire, Gary
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)
  • [38] New quantum error-correcting codes from hermitian self-orthogonal codes over GF(4)
    Kim, JL
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 209 - 213
  • [39] On matroids from self-orthogonal codes and their properties
    Loucks, Weston
    Yildiz, Bahattin
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (03): : 409 - 420
  • [40] On the Construction of Hermitian Self-Orthogonal Codes Over F9 and Their Application
    Li, Zhihao
    Li, Ruihu
    Guan, Chaofeng
    Song, Hao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (09)