Pattern classification of internal incipient faults during impulse tests using continuous wavelet analysis

被引:0
|
作者
M. S. Naderi
G. B. Gharehpetian
T. R. Blackburn
M. Abedi
机构
[1] Amirkabir University of Technology,Electrical Engineering Department
[2] University of New South Wales,School of Electrical Engineering
来源
Electrical Engineering | 2007年 / 90卷
关键词
Arc discharge; Power transformers; Windings internal incipient faults; Pattern classification; Wavelet transform; Impulse voltage;
D O I
暂无
中图分类号
学科分类号
摘要
In the case of a fault occurrence, the pattern of the fault currents obtained by the standard impulse tests contains a typical signature of the nature and the location of the insulation failure involved. This paper presents a new approach to classify the pattern of the arc discharge location as one of the important types of internal incipient faults in transformer windings. The continuous wavelet transform (CWT) has been used to calculate the most predominant frequency of each fault and its time of occurrence. The data obtained from the field tests of a 66 kV/25 MVA interleaved transformer winding and the computer simulations have been used for the classification.
引用
收藏
页码:79 / 85
页数:6
相关论文
共 50 条
  • [41] Application of Cross Wavelet Transform for ECG Pattern Analysis and Classification
    Banerjee, Swati
    Mitra, Madhuchhanda
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (02) : 326 - 333
  • [42] Classification of radial compressor faults using pattern-recognition techniques
    Aretakis, N
    Mathioudakis, K
    CONTROL ENGINEERING PRACTICE, 1998, 6 (10) : 1217 - 1223
  • [43] Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform
    Abid, Abdulbasit Z.
    Gdeisat, Munther A.
    Burton, David R.
    Lalor, Michael J.
    Abdul-Rahman, Hussein S.
    Lilley, Francis
    OPTICAL AND DIGITAL IMAGE PROCESSING, 2008, 7000
  • [44] Power System Faults Classification with Pattern Recognition Using Neural network
    Karimi, M.
    Banejad, M.
    Hassanpuor, H.
    Moeini, A.
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL IV, 2010, : 553 - 556
  • [45] Continuous Wavelet Transform Analysis for the Classification of Surface Electromyography Signals
    Kilby, J.
    Mawston, G.
    Hosseini, H. Gholam
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6, 2007, 14 : 1034 - +
  • [46] CONTINUOUS WAVELET ANALYSIS OF GENE EXPRESSION SIGNALS FOR CANCER CLASSIFICATION
    Xie, Xin-Ping
    Ding, Xuan-Hao
    Wang, Hong-Qiang
    Jiang, Ying-Chun
    JOURNAL OF BIOLOGICAL SYSTEMS, 2009, 17 (03) : 377 - 396
  • [47] Texture pattern analysis of kidney tissues for disorder identification and classification using dominant Gabor wavelet
    Raja, K. Bommanna
    Madheswaran, M.
    Thyagarajah, K.
    MACHINE VISION AND APPLICATIONS, 2010, 21 (03) : 287 - 300
  • [48] Vibration Pattern Recognition and Classification of Electric. Generator in Power System Using Wavelet Analysis
    Liu Jingbo
    Wang Xiuqing
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 6, 2008, : 34 - +
  • [49] Texture pattern analysis of kidney tissues for disorder identification and classification using dominant Gabor wavelet
    K. Bommanna Raja
    M. Madheswaran
    K. Thyagarajah
    Machine Vision and Applications, 2010, 21 : 287 - 300
  • [50] Pattern classification of decomposed wavelet information using ART2 networks for echoes analysis
    Solis, M.
    Benitez-Perez, H.
    Rubio, E.
    Medina-Gomez, L.
    Moreno, E.
    Gonzalez, G.
    Leija, L.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2008, 6 (01) : 33 - 44