Neural nonnegative matrix factorization for hierarchical multilayer topic modeling

被引:0
|
作者
Haddock, Jamie [1 ]
Will, Tyler [2 ]
Vendrow, Joshua [3 ]
Zhang, Runyu [4 ]
Molitor, Denali [5 ]
Needell, Deanna [6 ]
Gao, Mengdi [7 ]
Sadovnik, Eli [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Harvey Mudd Coll, Dept Math, 301 Platt Blvd, Claremont, CA 91711 USA
[2] Optimal Dynam, New York, NY 10001 USA
[3] MIT, Dept EECS, 50 Vassar St, Cambridge, MA 02140 USA
[4] Harvard Univ, Sch Engn & Appl Sci, 150 Western Ave, Cambridge, MA 02138 USA
[5] Google, Seattle, WA 98103 USA
[6] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[7] Schlumberger, Menlo Pk, CA 94025 USA
关键词
Hierarchical topic models; Nonnegative matrix factorization; Backpropagation; ALGORITHMS;
D O I
10.1007/s43670-023-00077-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] COSEPARABLE NONNEGATIVE MATRIX FACTORIZATION
    Pan, Junjun
    Ng, Michael K.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (03) : 1393 - 1420
  • [42] ON A GUIDED NONNEGATIVE MATRIX FACTORIZATION
    Vendrow, Joshua
    Haddock, Jamie
    Rebrova, Elizaveta
    Needell, Deanna
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3265 - 3269
  • [43] Nonnegative Matrix Factorization With Regularizations
    Ren, Weiya
    Li, Guohui
    Tu, Dan
    Jia, Li
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2014, 4 (01) : 153 - 164
  • [44] Simplicial Nonnegative Matrix Factorization
    Nguyen, Duy Khuong
    Than, Khoat
    Ho, Tu Bao
    PROCEEDINGS OF 2013 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES: RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2013, : 47 - 52
  • [45] Randomized nonnegative matrix factorization
    Erichson, N. Benjamin
    Mendible, Ariana
    Wihlborn, Sophie
    Kutz, J. Nathan
    PATTERN RECOGNITION LETTERS, 2018, 104 : 1 - 7
  • [46] CAUCHY NONNEGATIVE MATRIX FACTORIZATION
    Liutkus, Antoine
    Fitzgerald, Derry
    Badeau, Roland
    2015 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2015,
  • [47] Hierarchical neural topic modeling with manifold regularization
    Ziye Chen
    Cheng Ding
    Yanghui Rao
    Haoran Xie
    Xiaohui Tao
    Gary Cheng
    Fu Lee Wang
    World Wide Web, 2021, 24 : 2139 - 2160
  • [48] A Progressive Hierarchical Alternating Least Squares Method for Symmetric Nonnegative Matrix Factorization
    Hou, Liangshao
    Chu, Delin
    Liao, Li-Zhi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5355 - 5369
  • [49] Parallel Hierarchical Clustering using Rank-Two Nonnegative Matrix Factorization
    Manning, Lawton
    Ballard, Grey
    Kannan, Ramakrishnan
    Park, Haesun
    2020 IEEE 27TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC 2020), 2020, : 141 - 150
  • [50] Hierarchical neural topic modeling with manifold regularization
    Chen, Ziye
    Ding, Cheng
    Rao, Yanghui
    Xie, Haoran
    Tao, Xiaohui
    Cheng, Gary
    Wang, Fu Lee
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (06): : 2139 - 2160