The Universal Phase Space of AdS3 Gravity

被引:0
|
作者
Carlos Scarinci
Kirill Krasnov
机构
[1] School of Mathematical Sciences,
[2] University of Nottingham,undefined
[3] Max Planck Institute for Gravitational Physics,undefined
来源
关键词
Modulus Space; Fundamental Form; Maximal Surface; Symplectic Structure; Quadratic Differential;
D O I
暂无
中图分类号
学科分类号
摘要
We describe what can be called the “universal” phase space of AdS3 gravity, in which the moduli spaces of globally hyperbolic AdS spacetimes with compact spatial sections, as well as the moduli spaces of multi-black-hole spacetimes are realized as submanifolds. The universal phase space is parametrized by two copies of the universal Teichmüller space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(1)}$$\end{document} and is obtained from the correspondence between maximal surfaces in AdS3 and quasisymmetric homeomorphisms of the unit circle. We also relate our parametrization to the Chern-Simons formulation of 2+1 gravity and, infinitesimally, to the holographic (Fefferman-Graham) description. In particular, we obtain a relation between the generators of quasiconformal deformations in each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(1)}$$\end{document} sector and the chiral Brown-Henneaux vector fields. We also relate the charges arising in the holographic description (such as the mass and angular momentum of an AdS3 spacetime) to the periods of the quadratic differentials arising via the Bers embedding of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(1)\times\mathcal{T}(1)}$$\end{document} . Our construction also yields a symplectic map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T^ \ast \mathcal{T}(1) \rightarrow \mathcal{T}(1) \times \mathcal{T}(1)}$$\end{document} generalizing the well-known Mess map in the compact spatial surface setting.
引用
收藏
页码:167 / 205
页数:38
相关论文
共 50 条
  • [31] Asymptotic dynamics of AdS3 gravity with two asymptotic regions
    Henneaux, Marc
    Merbis, Wout
    Ranjbar, Arash
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
  • [32] Stability of warped AdS3 vacua of topologically massive gravity
    Anninos, Dionysios
    Esole, Mboyo
    Guica, Monica
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [33] Asymptotic dynamics of AdS3 gravity with two asymptotic regions
    Marc Henneaux
    Wout Merbis
    Arash Ranjbar
    Journal of High Energy Physics, 2020
  • [34] Notes on gravity multiplet correlators in AdS3 × S3
    Congkao Wen
    Shun-Qing Zhang
    Journal of High Energy Physics, 2021
  • [35] Phases of quantum gravity in AdS3 and linear dilaton backgrounds
    Giveon, A
    Kutasov, D
    Rabinovici, E
    Sever, A
    NUCLEAR PHYSICS B, 2005, 719 (1-2) : 3 - 34
  • [36] Black holes in truncated higher spin AdS3 gravity
    Bin Chen
    Jiang Long
    Yinan Wang
    Journal of High Energy Physics, 2012
  • [37] Consistent boundary conditions for new massive gravity in AdS3
    Liu, Yan
    Sun, Ya-Wen
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05):
  • [38] LECTURES ON HIGHER SPIN BLACK HOLES IN AdS3 GRAVITY
    Castro, Alejandra
    ACTA PHYSICA POLONICA B, 2016, 47 (12): : 2479 - 2508
  • [39] Warped AdS3 black holes in new massive gravity
    Clement, Gerard
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (10)
  • [40] AdS3 Einstein gravity and boundary description: pedagogical review
    Ma, Chen-Te
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (02)