The Universal Phase Space of AdS3 Gravity

被引:0
|
作者
Carlos Scarinci
Kirill Krasnov
机构
[1] School of Mathematical Sciences,
[2] University of Nottingham,undefined
[3] Max Planck Institute for Gravitational Physics,undefined
来源
关键词
Modulus Space; Fundamental Form; Maximal Surface; Symplectic Structure; Quadratic Differential;
D O I
暂无
中图分类号
学科分类号
摘要
We describe what can be called the “universal” phase space of AdS3 gravity, in which the moduli spaces of globally hyperbolic AdS spacetimes with compact spatial sections, as well as the moduli spaces of multi-black-hole spacetimes are realized as submanifolds. The universal phase space is parametrized by two copies of the universal Teichmüller space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(1)}$$\end{document} and is obtained from the correspondence between maximal surfaces in AdS3 and quasisymmetric homeomorphisms of the unit circle. We also relate our parametrization to the Chern-Simons formulation of 2+1 gravity and, infinitesimally, to the holographic (Fefferman-Graham) description. In particular, we obtain a relation between the generators of quasiconformal deformations in each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(1)}$$\end{document} sector and the chiral Brown-Henneaux vector fields. We also relate the charges arising in the holographic description (such as the mass and angular momentum of an AdS3 spacetime) to the periods of the quadratic differentials arising via the Bers embedding of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}(1)\times\mathcal{T}(1)}$$\end{document} . Our construction also yields a symplectic map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T^ \ast \mathcal{T}(1) \rightarrow \mathcal{T}(1) \times \mathcal{T}(1)}$$\end{document} generalizing the well-known Mess map in the compact spatial surface setting.
引用
收藏
页码:167 / 205
页数:38
相关论文
共 50 条
  • [1] The Universal Phase Space of AdS3 Gravity
    Scarinci, Carlos
    Krasnov, Kirill
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (01) : 167 - 205
  • [2] Phase transitions in warped AdS3 gravity
    Stéphane Detournay
    Céline Zwikel
    Journal of High Energy Physics, 2015
  • [3] Phase transitions in warped AdS3 gravity
    Detournay, Stephane
    Zwikel, Celine
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [4] AdS3 gravity and random CFT
    Cotler, Jordan
    Jensen, Kristan
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [5] AdS3 gravity and random CFT
    Jordan Cotler
    Kristan Jensen
    Journal of High Energy Physics, 2021
  • [6] A theory of reparameterizations for AdS3 gravity
    Jordan Cotler
    Kristan Jensen
    Journal of High Energy Physics, 2019
  • [7] A theory of reparameterizations for AdS3 gravity
    Cotler, Jordan
    Jensen, Kristan
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [8] THE R3 EXTENSION OF NEW MASSIVE GRAVITY IN AdS3 SPACE
    Setare, M. R.
    Sahraee, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (14):
  • [9] Note on new massive gravity in AdS3
    Liu, Yan
    Sun, Ya-Wen
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):
  • [10] Classification of boundary gravitons in AdS3 gravity
    Alan Garbarz
    Mauricio Leston
    Journal of High Energy Physics, 2014