Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices

被引:0
|
作者
Froilán M. Dopico
Plamen Koev
机构
[1] Universidad Carlos III de Madrid,Instituto de Ciencias Matemáticas CSIC
[2] San Jose State University,UAM
来源
Numerische Mathematik | 2011年 / 119卷
关键词
65F05; 65F15; 15A18; 15A23; 15B99;
D O I
暂无
中图分类号
学科分类号
摘要
We present a structured perturbation theory for the LDU factorization of (row) diagonally dominant matrices and we use this theory to prove that a recent algorithm of Ye (Math Comp 77(264):2195–2230, 2008) computes the L, D and U factors of these matrices with relative errors less than 14n3u, where u is the unit roundoff and n × n is the size of the matrix. The relative errors for D are componentwise and for L and U are normwise with respect the “max norm” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|A\|_M = \max_{ij} |a_{ij}|}$$\end{document}. These error bounds guarantee that for any diagonally dominant matrix A we can compute accurately its singular value decomposition and the solution of the linear system Ax = b for most vectors b, independently of the magnitude of the traditional condition number of A and in O(n3) flops.
引用
收藏
页码:337 / 371
页数:34
相关论文
共 50 条
  • [41] Generalized Perron complements in diagonally dominant matrices
    Zhong, Qin
    Li, Na
    AIMS MATHEMATICS, 2024, 9 (12): : 33879 - 33890
  • [42] LU DECOMPOSITIONS OF GENERALIZED DIAGONALLY DOMINANT MATRICES
    FUNDERLIC, RE
    NEUMANN, M
    PLEMMONS, RJ
    NUMERISCHE MATHEMATIK, 1982, 40 (01) : 57 - 69
  • [43] On Schur complement of block diagonally dominant matrices
    Zhang, CY
    Li, YT
    Chen, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) : 533 - 546
  • [44] The product α-diagonally dominant matrices and its applications
    Li, Guo
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 394 - 400
  • [45] Subdirect sums of doubly diagonally dominant matrices
    Zhu, Yan
    Huang, Ting-Zhu
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 171 - 182
  • [46] Perron Complements Of Diagonally Dominant Matrices And H-Matrices
    Zeng, Li
    Xiao, Ming
    Huang, Ting-Zhu
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 289 - 296
  • [47] Bounds For The Inverses Of Diagonally Dominant Pentadiagonal Matrices
    Huang, Zhuohong
    Liu, Jianzhou
    APPLIED MATHEMATICS E-NOTES, 2010, 10 : 11 - 18
  • [48] Simple criteria for generalized diagonally dominant matrices
    Liu, Jianzhou
    He, Anqi
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (07) : 1065 - 1072
  • [49] Locally Bi-diagonally Dominant Matrices
    Wang, Xincun
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 283 - 285
  • [50] Criteria Conditions for Generalized Diagonally Dominant Matrices
    TIAN Su-xia (Department of Computer Science
    数学季刊, 2007, (01) : 63 - 67