Some approximation properties of bivariate Bleimann-Butzer-Hahn operators based on (p, q)-integers

被引:12
|
作者
Mursaleen M. [1 ,2 ]
Nasiruzzaman M. [1 ]
机构
[1] Department of Mathematics, Aligarh Muslim University, Aligarh
[2] Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah
关键词
(p; q)-Bernstein operator; q)-Bleimann-Butzer-Hahn operators; q)-integers; Korovkin theorem; Lipschitz type maximal function; Modulus of continuity; q-bivariate Bleimann-Butzer-Hahn operators;
D O I
10.1007/s40574-016-0080-2
中图分类号
学科分类号
摘要
In this paper, we apply (p, q)-calculus to construct generalized bivariate Bleimann-Butzer-Hahn operators based on (p, q)-integers and obtain Korovkin type approximation theorem. Furthermore, we compute the rate of convergence for these operators by using the modulus of continuity and Lipschitz type maximal function. © 2016 Unione Matematica Italiana.
引用
收藏
页码:271 / 289
页数:18
相关论文
共 50 条
  • [31] Bleimann, Butzer, and Hahn Operators Based on the[inline-graphic not available: see fulltext]-Integers
    Ali Aral
    Ogün Doğru
    Journal of Inequalities and Applications, 2007
  • [32] SOME BIVARIATE DURRMEYER OPERATORS BASED ON q-INTEGERS.
    Barbosu, Dan
    Muraru, Carmen Violeta
    Acu, Ana-Maria
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (01): : 59 - 75
  • [33] A Korovkin Type Approximation Theorem For Balazs Type Bleimann, Butzer and Hahn Operators via Power Series Statistical Convergence
    Soylemez, Dilek
    MATHEMATICA SLOVACA, 2022, 72 (01) : 153 - 164
  • [34] Bivariate-Schurer-Stancu Operators Based on (p,q)-Integers
    Rao, Nadeem
    Wafi, Abdul
    FILOMAT, 2018, 32 (04) : 1251 - 1258
  • [35] Generalized (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Bleimann-Butzer-Hahn operators and some approximation results
    M Mursaleen
    Md Nasiruzzaman
    Khursheed J Ansari
    Abdullah Alotaibi
    Journal of Inequalities and Applications, 2017 (1)
  • [36] Approximation Properties of λ-Gamma Operators Based on q-Integers
    Cheng, Wen-Tao
    Tang, Xiao-Jun
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [37] Approximation properties of (p, q) bivariate Szasz Beta type operators
    Khan, Shuzaat Ali
    Rao, Nadeem
    Khan, Taqseer
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 382 - 399
  • [38] APPROXIMATION BY BASKAKOV-DURRMEYER OPERATORS BASED ON (p, q)-INTEGERS
    Acar, Tuncer
    Aral, Ali
    Mursaleen, Mohammad
    MATHEMATICA SLOVACA, 2018, 68 (04) : 897 - 906
  • [39] Statistical approximation properties of λ-Bernstein operators based on q-integers
    Cai, Qing-Bo
    Zhou, Guorong
    Li, Junjie
    OPEN MATHEMATICS, 2019, 17 : 487 - 498
  • [40] Some approximation properties of (p, q)-Bernstein operators
    Kang, Shin Min
    Rafiq, Arif
    Acu, Ana-Maria
    Ali, Faisal
    Kwun, Young Chel
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,