In this paper we study q-analogues of Euler sums and present a new family of identities by using the method of Jackson q-integral representations of series. We then apply it to obtain a family of identities relating quadratic Euler sums to linear sums and q-polylogarithms. Furthermore, we use certain stuffle products to evaluate several q-series with q-harmonic numbers. Some interesting new results and illustrative examples are considered. Finally, if q tends to 1, we obtain some explicit relations for the classical Euler sums.