Optimization for peptide sample preparation for urine peptidomics

被引:0
|
作者
Tara K Sigdel
Carrie D Nicora
Szu-Chuan Hsieh
Hong Dai
Wei-Jun Qian
David G Camp
Minnie M Sarwal
机构
[1] California Pacific Medical Center Research Institute,Biological Sciences Division
[2] Pacific Northwest National Laboratory,undefined
来源
Clinical Proteomics | 2014年 / 11卷
关键词
Urine; Biomarker; Peptidomics; Biomarker discovery; Proteomics; Transplantation;
D O I
暂无
中图分类号
学科分类号
摘要
Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most proteins when utilizing the conventional SPE method. In conclusion, the mSPE method was found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis due to the optimized sample clean up that provided improved experimental inference from the confidently identified peptides.
引用
收藏
相关论文
共 50 条
  • [31] Sample preparation and UHPLC-FD analysis of pteridines in human urine
    Tomsikova, H.
    Solich, P.
    Novakova, L.
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2014, 95 : 265 - 272
  • [32] Method for quantification of a prostate cancer biomarker in urine without sample preparation
    Maraldo, David
    Garcia, Fernando U.
    Mutharasan, Raj
    ANALYTICAL CHEMISTRY, 2007, 79 (20) : 7683 - 7690
  • [33] New approach to sample preparation to cytology of voided urine in bladder carcinoma
    Kudaybergenova, A.
    Savostikova, M.
    VIRCHOWS ARCHIV, 2015, 467 : S117 - S118
  • [34] Sample preparation for identification of selenocompounds in urine by electrospray-MS/MS
    Huerta, VD
    Szpunar, J
    Lobinski, R
    Sánchez, MLF
    Sanz-Medel, A
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2003, 18 (12) : 1471 - 1476
  • [35] THE EFFECT OF STORAGE-CONDITIONS AND SAMPLE PREPARATION ON THE ANALYSIS OF ALBUMIN IN URINE
    TOWNSEND, JC
    NEW ZEALAND MEDICAL JOURNAL, 1986, 99 (806) : 552 - 552
  • [36] Sample preparation development and matrix effects evaluation for multianalyte determination in urine
    Marchi, Ivano
    Rudaz, Serge
    Veuthey, Jean-Luc
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2009, 49 (02) : 459 - 467
  • [37] Sample preparation optimization for the simultaneous determination of mycotoxins in cereals
    A. Rahmani
    S. Jinap
    F. Soleimany
    A. Khatib
    C. P. Tan
    European Food Research and Technology, 2011, 232 : 723 - 735
  • [38] High-throughput glycomics: Optimization of sample preparation
    Akmacic, I. Trbojevic
    Ugrina, I.
    Stambuk, J.
    Gudelj, I.
    Vuckovic, F.
    Lauc, G.
    Pucic-Bakovic, M.
    BIOCHEMISTRY-MOSCOW, 2015, 80 (07) : 934 - 942
  • [39] RATIONAL ORGANIZATION OF TRIALS - NEED FOR OPTIMIZATION OF SAMPLE PREPARATION
    FEINBERG, M
    ANALUSIS, 1992, 20 (01) : M23 - M25
  • [40] Determination of pyridinium crosslinks in serum - An optimization of sample preparation
    Spacek, P
    Hulejova, H
    Adam, M
    JOURNAL OF CHROMATOGRAPHY B, 1997, 689 (02): : 404 - 408