Intuitive physics learning in a deep-learning model inspired by developmental psychology

被引:0
|
作者
Luis S. Piloto
Ari Weinstein
Peter Battaglia
Matthew Botvinick
机构
[1] DeepMind,
[2] Princeton Neuroscience Institute,undefined
[3] Princeton University,undefined
[4] Gatsby Computational Neuroscience Unit,undefined
[5] University College London,undefined
来源
Nature Human Behaviour | 2022年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
‘Intuitive physics’ enables our pragmatic engagement with the physical world and forms a key component of ‘common sense’ aspects of thought. Current artificial intelligence systems pale in their understanding of intuitive physics, in comparison to even very young children. Here we address this gap between humans and machines by drawing on the field of developmental psychology. First, we introduce and open-source a machine-learning dataset designed to evaluate conceptual understanding of intuitive physics, adopting the violation-of-expectation (VoE) paradigm from developmental psychology. Second, we build a deep-learning system that learns intuitive physics directly from visual data, inspired by studies of visual cognition in children. We demonstrate that our model can learn a diverse set of physical concepts, which depends critically on object-level representations, consistent with findings from developmental psychology. We consider the implications of these results both for AI and for research on human cognition.
引用
收藏
页码:1257 / 1267
页数:10
相关论文
共 50 条
  • [21] Physics-driven deep-learning inversion with application to transient electromagnetics
    Colombo, Daniele
    Turkoglu, Ersan
    Li, Weichang
    Sandoval-Curiel, Ernesto
    Rovetta, Diego
    GEOPHYSICS, 2021, 86 (03) : E209 - E224
  • [22] Deep-Learning performance for Digital Terrain Model generation
    Knyaz, Vladimir
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIV, 2018, 10789
  • [23] Automated deep-learning model optimization framework for microcontrollers
    Hong, Seungtae
    Park, Gunju
    Kim, Jeong-Si
    ETRI JOURNAL, 2024,
  • [24] An Explainable Deep-learning Model of Proton Auroras on Mars
    Dhuri, Dattaraj B.
    Atri, Dimitra
    Alhantoobi, Ahmed
    PLANETARY SCIENCE JOURNAL, 2024, 5 (06):
  • [25] Deep-learning model for screening sepsis using electrocardiography
    Kwon, Joon-myoung
    Lee, Ye Rang
    Jung, Min-Seung
    Lee, Yoon-Ji
    Jo, Yong-Yeon
    Kang, Da-Young
    Lee, Soo Youn
    Cho, Yong-Hyeon
    Shin, Jae-Hyun
    Ban, Jang-Hyeon
    Kim, Kyung-Hee
    SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2021, 29 (01):
  • [26] An integrated deep-learning model for smart waste classification
    Shivendu Mishra
    Ritika Yaduvanshi
    Prince Rajpoot
    Sharad Verma
    Amit Kumar Pandey
    Digvijay Pandey
    Environmental Monitoring and Assessment, 2024, 196
  • [27] Enhanced Deep-Learning Model for Carbon Footprints of Chemicals
    Zhang, Dachuan
    Wang, Zhanyun
    Oberschelp, Christopher
    Bradford, Eric
    Hellweg, Stefanie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (07) : 2700 - 2708
  • [28] A deep-learning model for the density profiles of subhaloes in IllustrisTNG
    Lucie-Smith, Luisa
    Despali, Giulia
    Springel, Volker
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 532 (01) : 164 - 176
  • [29] An integrated deep-learning model for smart waste classification
    Mishra, Shivendu
    Yaduvanshi, Ritika
    Rajpoot, Prince
    Verma, Sharad
    Pandey, Amit Kumar
    Pandey, Digvijay
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [30] DDoSNet: A Deep-Learning Model for Detecting Network Attacks
    Elsayed, Mahmoud Said
    Nhien-An Le-Khac
    Dev, Soumyabrata
    Jurcut, Anca Delia
    2020 21ST IEEE INTERNATIONAL SYMPOSIUM ON A WORLD OF WIRELESS, MOBILE AND MULTIMEDIA NETWORKS (IEEE WOWMOM 2020), 2020, : 391 - 396