Unrevealing metabolomics for abiotic stress adaptation and tolerance in plants

被引:23
|
作者
Choudhury S. [1 ,2 ]
Sharma P. [3 ]
Moulick D. [1 ]
Mazumder M.K. [1 ,4 ]
机构
[1] Plant Stress Biology and Metabolomics Laboratory, Central Instrumentation Laboratory, Assam University, Silchar
[2] Department of Life Science and Bioinformatics, Assam University, Silchar
[3] Don Bosco School, Silchar
[4] Department of Zoology, Dhemaji College, Dhemaji
关键词
Abiotic stress; Mass spectrometry; Metabolomics; NMR; Systems biology;
D O I
10.1007/s12892-021-00102-8
中图分类号
学科分类号
摘要
The post-genomic era has witnessed several new possibilities to understand diverse functional aspects of plants quite precisely. From genomics to metabolomics and now phenomics, the complex interplay of these biological networks has been successfully elucidated. Abiotic stresses, such as drought, flooding, exposure to heavy metals and metalloids, and high or low temperature are foremost constraints in agriculture, and remains as the major reason for poor crop productivity and low yield globally. The primary aim of metabolomics is to identify final gene products, the metabolites, which serve as prospective markers (or traits) to comprehend abiotic stress adaptation and tolerance in plants. This review provides an overview on the application of metabolomics as a comprehensive tool for “Systems Biology Approach” to unravel the complex interaction of networks and components in plants towards abiotic stress adaptation and tolerance. © 2021, Korean Society of Crop Science (KSCS).
引用
收藏
页码:479 / 493
页数:14
相关论文
共 50 条
  • [31] Abiotic Stress Tolerance in Plants: Brassinosteroids Navigate Competently
    Chaudhuri, Abira
    Halder, Koushik
    Abdin, Malik Z. Z.
    Majee, Manoj
    Datta, Asis
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [32] Exploring strigolactones for inducing abiotic stress tolerance in plants
    Khan, Mohd. kamran
    Pandey, Anamika
    Hamurcu, Mehmet
    Vyhnanek, Tomas
    Zargar, Sajad majeed
    Kahraman, Abdullah
    Topal, Ali
    Gezgin, Sait
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2024, 60 (02) : 55 - 69
  • [33] Role of nitric oxide in tolerance of plants to abiotic stress
    Siddiqui, Manzer H.
    Al-Whaibi, Mohamed H.
    Basalah, Mohammed O.
    PROTOPLASMA, 2011, 248 (03) : 447 - 455
  • [34] Fructan and its relationship to abiotic stress tolerance in plants
    David P. Livingston
    Dirk K. Hincha
    Arnd G. Heyer
    Cellular and Molecular Life Sciences, 2009, 66 : 2007 - 2023
  • [35] Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses
    Naing, Aung Htay
    Kim, Chang Kil
    PHYSIOLOGIA PLANTARUM, 2021, 172 (03) : 1711 - 1723
  • [36] Rootstock Breeding between Site Adaptation and Abiotic Stress Tolerance
    Ruehl, E. H.
    Schmid, J.
    VI INTERNATIONAL PHYLLOXERA SYMPOSIUM, 2014, 1045 : 117 - 121
  • [37] Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation
    Ye, Jia Yuan
    Tian, Wen Hao
    Jin, Chong Wei
    STRESS BIOLOGY, 2022, 2 (01):
  • [38] Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants
    Kaur, Harmeet
    Mukherjee, Soumya
    Baluska, Frantisek
    Bhatla, Satish C.
    PLANT SIGNALING & BEHAVIOR, 2015, 10 (11)
  • [39] Citric Acid-Mediated Abiotic Stress Tolerance in Plants
    Tahjib-Ul-Arif, Md
    Zahan, Mst Ishrat
    Karim, Md Masudul
    Imran, Shahin
    Hunter, Charles T.
    Islam, Md Saiful
    Mia, Md Ashik
    Hannan, Md Abdul
    Rhaman, Mohammad Saidur
    Hossain, Md Afzal
    Brestic, Marian
    Skalicky, Milan
    Murata, Yoshiyuki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (13)
  • [40] Recent physiological and molecular approaches of abiotic stress tolerance in plants
    Shah, Anis Ali
    Altaf, Muhammad Ahsan
    Sardar, Rehana
    BRAZILIAN JOURNAL OF BOTANY, 2024, 47 (03) : 681 - 682