On stochastic generation of ultrametrics in high-dimensional Euclidean spaces

被引:10
|
作者
Zubarev A.P. [1 ,2 ]
机构
[1] Physics Department, Samara State University of Railway Transport, Perviy Bezimyaniy pereulok 18, Samara
[2] Physics Department, Samara State Aerospace University, Moskovskoe shosse 34, Samara
基金
俄罗斯基础研究基金会;
关键词
disordered systems; high-dimensional Euclidean spaces; random distributions; the law of large numbers; ultrametric spaces; ultrametricity index; ultrametrics;
D O I
10.1134/S2070046614020046
中图分类号
学科分类号
摘要
We present a proof of the theorem which states that a matrix of Euclidean distances on a set of specially distributed random points in the n-dimensional Euclidean space Rn converges in probability to an ultrametric matrix as n → ∞. Values of the elements of an ultrametric distance matrix are completely determined by variances of coordinates of random points. Also we present a probabilistic algorithm for generation of finite ultrametric structures of any topology in high-dimensional Euclidean space. Validity of the algorithm is demonstrated by explicit calculations of distance matrices and ultrametricity indexes for various dimensions n. © 2014, Pleiades Publishing, Ltd.
引用
收藏
页码:155 / 165
页数:10
相关论文
共 50 条
  • [31] High-dimensional ellipsoids converge to Gaussian spaces
    Kazukawa, Daisuke
    Shioya, Takashi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2024, 76 (02) : 473 - 501
  • [32] Stable moduli spaces of high-dimensional manifolds
    Galatius, Soren
    Randal-Williams, Oscar
    ACTA MATHEMATICA, 2014, 212 (02) : 257 - 377
  • [33] Aspects of Particle Filtering in High-Dimensional Spaces
    van Leeuwen, Peter Jan
    DYNAMIC DATA-DRIVEN ENVIRONMENTAL SYSTEMS SCIENCE, DYDESS 2014, 2015, 8964 : 251 - 262
  • [34] Pattern selection in high-dimensional parameter spaces
    Viehoever, Georg
    Ward, Brian
    Stock, Hans-Juergen
    OPTICAL MICROLITHOGRAPHY XXV, PTS 1AND 2, 2012, 8326
  • [35] Differential evolution in high-dimensional search spaces
    Olorunda, Olusegun
    Engelbrecht, Andries P.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1934 - 1941
  • [36] Optimal outlier removal in high-dimensional spaces
    Dunagan, J
    Vempala, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 68 (02) : 335 - 373
  • [37] Constructive Kissing Numbers in High-Dimensional Spaces
    Lanju Xu
    Journal of Systems Science and Complexity, 2007, 20 : 30 - 40
  • [38] Mining Projected Clusters in High-Dimensional Spaces
    Bouguessa, Mohamed
    Wang, Shengrui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (04) : 507 - 522
  • [39] High-dimensional distributed semantic spaces for utterances
    Karlgren, Jussi
    Kanerva, Pentti
    NATURAL LANGUAGE ENGINEERING, 2019, 25 (04) : 503 - 518
  • [40] Structure and visualization of high-dimensional conductance spaces
    Taylor, Adam L.
    Hickey, Timothy J.
    Prinz, Astrid A.
    Marder, Eve
    JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (02) : 891 - 905