Friction welding of conventional Ti-6Al-4V alloy with a Ti-6Al-4V based metal matrix composite reinforced by TiC

被引:0
|
作者
Sergey V. Prikhodko
Dmytro G. Savvakin
Pavlo E. Markovsky
Olexander O. Stasuk
James Penney
Norbert Enzinger
Michael Gaskill
Frank Deley
机构
[1] University of California Los Angeles,Department of Materials Science and Engineering
[2] National Academy of Science of Ukraine,G.V. Kurdyumov Institute for Metal Physics
[3] Graz University of Technology,Institute of Materials Science, Joining and Forming
[4] Taylor-Winfield Technologies,undefined
[5] Inc.,undefined
来源
Welding in the World | 2021年 / 65卷
关键词
Powder metallurgy; Multi-layered structure; Rotary friction welding; Linear friction welding; Titanium alloy; Metal matrix composite;
D O I
暂无
中图分类号
学科分类号
摘要
Titanium alloys are supreme structural materials primarily due to their high specific strength. However, their wide use is largely restrained by the high cost of raw titanium compared to other metals commonly used in structural alloys. Layered structures of titanium alloys allow substantial increase of the material utilisation ratio and therefore draw significant attention. The rational ways of layered parts fabrication are bonding or joining of individually optimised layers into a final complex structure. The use of friction welding to join the parts is one of the most attractive ways of achieving a desirable result, since it is a solid state and near-net-shape process that modifies the structure of connected parts only locally. The study goal was to validate feasibility of the layered structures of Ti-6Al-4V (Ti-64) alloy and metal matrix composite (MMC) on its base with 10% of TiC fabricated by rotary friction welding (RFW) and linear friction welding (LFW). Both initial structures, Ti-64 and MMC, were made using low-cost blended elemental powder metallurgy. RFW and LFW were successfully used to bond the sections of the alloy and its composite. TiC particles stabilise the structure and are not fragmented by friction welding under used processing parameters.
引用
收藏
页码:415 / 428
页数:13
相关论文
共 50 条
  • [21] Strong and Ductile Ti-6Al-4V Alloy Produced by Hot Pressing of Ti-6Al-4V Swarf
    Yang, F.
    Pi, Z. Q.
    Zhao, Q. Y.
    Raynova, S.
    Liu, Q.
    Sharp, K.
    Brandt, M.
    Bolzoni, L.
    Qian, M.
    JOM, 2019, 71 (03) : 1056 - 1061
  • [22] Strong and Ductile Ti-6Al-4V Alloy Produced by Hot Pressing of Ti-6Al-4V Swarf
    F. Yang
    Z. Q. Pi
    Q. Y. Zhao
    S. Raynova
    Q. Liu
    K. Sharp
    M. Brandt
    L. Bolzoni
    M. Qian
    JOM, 2019, 71 : 1056 - 1061
  • [23] Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V
    Jacques Tchein, Gnofam
    Jacquin, Dimitri
    Coupard, Dominique
    Lacoste, Eric
    Girot Mata, Franck
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (06): : 2113 - 2123
  • [24] Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V
    Gnofam Jacques Tchein
    Dimitri Jacquin
    Dominique Coupard
    Eric Lacoste
    Franck Girot Mata
    Metallurgical and Materials Transactions A, 2018, 49 : 2113 - 2123
  • [25] BOUND METAL DEPOSITION OF Ti-6Al-4V ALLOY
    Tuncer, Nihan
    Reidy, John P.
    Jorgensen, Luke
    Bose, Animesh
    INTERNATIONAL JOURNAL OF POWDER METALLURGY, 2024, 60 (01):
  • [26] Friction welding of electron beam melted Ti-6Al-4V
    Qin, P. T.
    Damodaram, R.
    Maity, T.
    Zhang, W. W.
    Yang, C.
    Wang, Z.
    Prashanth, K. G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 761
  • [27] Linear friction welding of Ti-6Al-4V: Modelling and validation
    Turner, R.
    Gebelin, J. -C.
    Ward, R. M.
    Reed, R. C.
    ACTA MATERIALIA, 2011, 59 (10) : 3792 - 3803
  • [28] A literature review of Ti-6Al-4V linear friction welding
    McAndrew, Anthony R.
    Colegrove, Paul A.
    Buhr, Clement
    Flipo, Bertrand C. D.
    Vairis, Achilleas
    PROGRESS IN MATERIALS SCIENCE, 2018, 92 : 225 - 257
  • [29] Electron beam welding of SiCp/Al composite to Ti-6Al-4V
    Chen, G. Q.
    Zhang, B. G.
    Liu, L. Y.
    Feng, J. C.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 1309 - 1312
  • [30] Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy
    Wang, Jiye
    Su, Jianqing
    Mishra, Rajiv S.
    Xu, Ray
    Baumann, John A.
    WEAR, 2014, 321 : 25 - 32