Friction welding of conventional Ti-6Al-4V alloy with a Ti-6Al-4V based metal matrix composite reinforced by TiC

被引:0
|
作者
Sergey V. Prikhodko
Dmytro G. Savvakin
Pavlo E. Markovsky
Olexander O. Stasuk
James Penney
Norbert Enzinger
Michael Gaskill
Frank Deley
机构
[1] University of California Los Angeles,Department of Materials Science and Engineering
[2] National Academy of Science of Ukraine,G.V. Kurdyumov Institute for Metal Physics
[3] Graz University of Technology,Institute of Materials Science, Joining and Forming
[4] Taylor-Winfield Technologies,undefined
[5] Inc.,undefined
来源
Welding in the World | 2021年 / 65卷
关键词
Powder metallurgy; Multi-layered structure; Rotary friction welding; Linear friction welding; Titanium alloy; Metal matrix composite;
D O I
暂无
中图分类号
学科分类号
摘要
Titanium alloys are supreme structural materials primarily due to their high specific strength. However, their wide use is largely restrained by the high cost of raw titanium compared to other metals commonly used in structural alloys. Layered structures of titanium alloys allow substantial increase of the material utilisation ratio and therefore draw significant attention. The rational ways of layered parts fabrication are bonding or joining of individually optimised layers into a final complex structure. The use of friction welding to join the parts is one of the most attractive ways of achieving a desirable result, since it is a solid state and near-net-shape process that modifies the structure of connected parts only locally. The study goal was to validate feasibility of the layered structures of Ti-6Al-4V (Ti-64) alloy and metal matrix composite (MMC) on its base with 10% of TiC fabricated by rotary friction welding (RFW) and linear friction welding (LFW). Both initial structures, Ti-64 and MMC, were made using low-cost blended elemental powder metallurgy. RFW and LFW were successfully used to bond the sections of the alloy and its composite. TiC particles stabilise the structure and are not fragmented by friction welding under used processing parameters.
引用
收藏
页码:415 / 428
页数:13
相关论文
共 50 条
  • [1] Friction welding of conventional Ti-6Al-4V alloy with a Ti-6Al-4V based metal matrix composite reinforced by TiC
    Prikhodko, Sergey, V
    Savvakin, Dmytro G.
    Markovsky, Pavlo E.
    Stasuk, Olexander O.
    Penney, James
    Enzinger, Norbert
    Gaskill, Michael
    Deley, Frank
    WELDING IN THE WORLD, 2021, 65 (03) : 415 - 428
  • [2] Diffusion bonding of TiC or TiB reinforced Ti-6Al-4V matrix composites to conventional Ti-6Al-4V alloy
    Prikhodko, Sergey, V
    Savvakin, Dmytro G.
    Markovsky, Pavlo E.
    Stasuk, Olexander O.
    Penney, James
    Shirzadi, Amir A.
    Davies, Peter D.
    Davies, Helen M.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2020, 25 (06) : 518 - 524
  • [3] Microstructure and mechanical properties of severely deformed TI-6AL-4V and TI-6AL-4V/TiC metal matrix composite
    Yapici, GG
    Karaman, I
    Luo, ZP
    ULTRAFINE GRAINED MATERIALS III, 2004, : 433 - 438
  • [4] TiC particle reinforced Ti-6Al-4V friction surfacing coatings
    Belei, C.
    Fitseva, V.
    dos Santos, J. F.
    Alcantara, N. G.
    Hanke, S.
    SURFACE & COATINGS TECHNOLOGY, 2017, 329 : 163 - 173
  • [5] Transformation superplasticity of Ti-6Al-4V and Ti-6Al-4V/TiC composites at high stresses
    Schuh, C
    Dunand, DC
    SUPERPLASTICITY IN ADVANCED MATERIALS, ICSAM-2000, 2001, 357-3 : 177 - 182
  • [6] STRUCTURE AND PITTING CORROSION OF Ti-6Al-4V ALLOY AND Ti-6Al-4V WELDS
    Ferdinandov, Nikolay Vasilev
    Gospodinov, Danail Dimitrov
    Ilieva, Mariana Dimitrova
    Radev, Rossen Hristov
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND SYSTEMS, 2018, : 325 - 330
  • [7] Microstructural analysis on Ti-6Al-4V and 10 vol.% (TiB+TiC)/Ti-6Al-4V metal matrix composites
    Mak, J.
    Wuhrer, R.
    Heness, G.
    Qin, J.
    Lu, W.
    Zhang, D.
    Yeung, W. Y.
    FRONTIERS IN MATERIALS SCIENCE AND TECHNOLOGY, 2008, 32 : 115 - +
  • [8] WELDING OF Ti-6Al-4V IN AIR
    Schwandt, Carsten
    Allen, Chris
    Fray, Derek J.
    TMS 2014 SUPPLEMENTAL PROCEEDINGS, 2014, : 87 - 92
  • [9] Damage mechanisms of torsion-tested Ti-6Al-4V alloy and TiCp/Ti-6Al-4V composite
    Zhu, JH
    Liaw, PK
    Corum, JM
    Ruggles, MB
    JOHANNES WEERTMAN SYMPOSIUM, 1996, : 127 - 134
  • [10] Linear friction welding of Ti-6Al-4V alloy: Microstructure characterization
    Ma, T. J.
    Li, W. -Y.
    Xu, Q. Z.
    Zhang, Y.
    Li, J. L.
    Yang, S. Q.
    ADVANCED WELDING AND MICRO JOINING / PACKAGING FOR THE 21ST CENTURY, 2008, 580-582 : 405 - 408