Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion

被引:0
|
作者
Qin Cheng
Xue Yan
机构
[1] Xuzhou College of Industrial Technology,School of Mechanical and Electrical Engineering
[2] Chinese Academy of Sciences,State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics
关键词
LPBF; Inconel 718; Scanning speed; Microstructure; Properties;
D O I
暂无
中图分类号
学科分类号
摘要
Inconel 718 superalloy was prepared by laser powder bed fusion (LPBF) under different scanning speeds. The microstructure, texture, and tensile properties of Inconel 718 at different scanning speeds were tested by optical microscope, scanning electron microscopy, electron backscatter diffraction, tensile testing machine and friction and wear test machine. The results show that defect size tends to increase with the increased scanning speeds, while the cellular structure size is smaller at higher scan speeds. Defect density from higher scanning speeds can severely deteriorate LPBF Inconel 718 fracture toughness. When the scanning speed is 960 mm/s, the LPBF Inconel 718 alloy can obtain a low wear rate of 1.426 × 10–9 m3/N·m.
引用
收藏
页码:997 / 1006
页数:9
相关论文
共 50 条
  • [21] Effects of Magnetic Abrasive Finishing on Microstructure and Mechanical Properties of Inconel 718 Processed by Laser Powder Bed Fusion
    Zhao, Yunhao
    Ratay, Jason
    Li, Kun
    Yamaguchi, Hitomi
    Xiong, Wei
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (02):
  • [22] The evolution of microstructure and mechanical properties of Inconel 625 alloy fabricated by laser powder bed fusion via novel hybrid scanning strategy
    Zhou, Libo
    Peng, Zeai
    Chen, Jian
    Ren, Yanjie
    Niu, Yan
    Qiu, Wei
    Tang, Jianzhong
    Li, Zhou
    Li, Cong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 911
  • [23] Microstructures and High-Temperature Mechanical Properties of Inconel 718 Superalloy Fabricated via Laser Powder Bed Fusion
    Li, Nan
    Wang, Changshun
    Li, Chenglin
    MATERIALS, 2024, 17 (15)
  • [24] The precipitation behavior effect of δ and γ" phases on mechanical properties of laser powder bed fusion Inconel 718 alloy
    Cheng, Wenhao
    Sun, Yiming
    Ma, Rui
    Wang, Yajun
    Bai, Jie
    Xue, Linan
    Yang, Jin
    Liu, Hongbing
    Song, Xiaoguo
    Tan, Caiwang
    Yuan, Qinfeng
    MATERIALS CHARACTERIZATION, 2022, 194
  • [25] Tribocorrosion Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion-Based Additive Manufacturing
    Siddaiah, Arpith
    Kasar, Ashish
    Kumar, Pankaj
    Akram, Javed
    Misra, Manoranjan
    Menezes, Pradeep L.
    COATINGS, 2021, 11 (02) : 1 - 9
  • [26] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sharma, Sunny
    Palaniappan, Karthik
    Mishra, Vagish D.
    Vedantam, Srikanth
    Murthy, H.
    Rao, Balkrishna C.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (01): : 270 - 285
  • [27] Origin of strain localization at twin boundary in Inconel 718 superalloy fabricated by laser powder bed fusion
    Li, X. C.
    Wu, Y. N.
    Yang, R.
    Zhang, Z. B.
    42ND RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: MICROSTRUCTURAL VARIABILITY: PROCESSING, ANALYSIS, MECHANISMS AND PROPERTIES, 2022, 1249
  • [28] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sunny Sharma
    Karthik Palaniappan
    Vagish D. Mishra
    Srikanth Vedantam
    H. Murthy
    Balkrishna C. Rao
    Metallurgical and Materials Transactions A, 2023, 54 : 270 - 285
  • [29] Impact of process parameters on the dynamic behavior of Inconel 718 fabricated via laser powder bed fusion
    Abruzzo, Michele
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Romoli, Luca
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (7-8): : 3655 - 3669
  • [30] Evolution of dislocation cellular pattern in Inconel 718 alloy fabricated by laser powder-bed fusion
    He, Minglin
    Cao, Hailin
    Liu, Qian
    Yi, Jiang
    Ni, Yong
    Wang, Shuai
    ADDITIVE MANUFACTURING, 2022, 55