Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network

被引:0
|
作者
Tomoyuki Fujioka
Kazunori Kubota
Mio Mori
Yuka Kikuchi
Leona Katsuta
Mai Kasahara
Goshi Oda
Toshiyuki Ishiba
Tsuyoshi Nakagawa
Ukihide Tateishi
机构
[1] Tokyo Medical and Dental University,Department of Radiology
[2] Tokyo Medical and Dental University,Department of Surgery, Breast Surgery
来源
关键词
Breast imaging; Ultrasound; Deep learning; Convolutional neural network; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:466 / 472
页数:6
相关论文
共 50 条
  • [21] THROMBOELASTOGRAPHIC DISTINCTION OF MALIGNANT FROM BENIGN BREAST MASSES - PRELIMINARY-REPORT
    HAID, M
    SOUTHERN MEDICAL JOURNAL, 1977, 70 (07) : 774 - 776
  • [22] Classification of Histopathology Images of Breast into Benign and Malignant using a Single-layer Convolutional Neural Network
    Nejad, Elaheh Mahraban
    Affendey, Lilly Suriani
    Latip, Rohaya Binti
    Bin Ishak, Iskandar
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION, 2015, : 50 - 53
  • [23] Neural Network Training by Maximization of the Area Under the ROC Curve: Application to Characterization of Masses on Breast Ultrasound as Malignant or Benign
    Sahiner, Berkman
    He, Xin
    Chen, Weijie
    Chan, Heang-Ping
    Hadjiiski, Lubomir
    Petrick, Nicholas
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
  • [24] Breast Cancer Detection using Deep Convolutional Neural Network
    Mechria, Hana
    Gouider, Mohamed Salah
    Hassine, Khaled
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 655 - 660
  • [25] Using the GoogLeNet deep-learning model to distinguish between benign and malignant breast masses based on conventional ultrasound: a systematic review and meta-analysis
    Wang, Jinli
    Tong, Jin
    Li, Jun
    Cao, Chunli
    Wang, Sirui
    Bi, Tianyu
    Zhu, Peishan
    Shi, Linan
    Deng, Yaqian
    Ma, Ting
    Hou, Jixue
    Cui, Xinwu
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (10) : 7111 - 7127
  • [26] Distinction between phyllodes tumor and fibroadenoma in breast ultrasound using deep learning image analysis
    Stoffel, Elina
    Becker, Anton S.
    Wurnig, Moritz C.
    Marcon, Magda
    Ghafoor, Soleen
    Berger, Nicole
    Boss, Andreas
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2018, 5 : 165 - 170
  • [27] Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
    He Ma
    Ronghui Tian
    Hong Li
    Hang Sun
    Guoxiu Lu
    Ruibo Liu
    Zhiguo Wang
    BioMedical Engineering OnLine, 20
  • [28] Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images
    Ma, He
    Tian, Ronghui
    Li, Hong
    Sun, Hang
    Lu, Guoxiu
    Liu, Ruibo
    Wang, Zhiguo
    BIOMEDICAL ENGINEERING ONLINE, 2021, 20 (01)
  • [29] Diagnostic system of breast ultrasound images using Convolutional Neural Network
    Kikuchi, Masayuki
    Hayashida, Tetsu
    Watanuki, Rurina
    Nakashoji, Ayako
    Kawai, Yuko
    Nagayama, Aiko
    Seki, Tomoko
    Takahashi, Maiko
    Kitagawa, Yuko
    CANCER RESEARCH, 2020, 80 (04)
  • [30] ULTRASOUND IMAGE DISCRIMINATION BETWEEN BENIGN AND MALIGNANT ADNEXAL MASSES BASED ON A NEURAL NETWORK APPROACH
    Aramendia-Vidaurreta, Veronica
    Cabeza, Rafael
    Villanueva, Arantxa
    Navallas, Javier
    Luis Alcazary, Juan
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2016, 42 (03): : 742 - 752