Structure of Solutions of Multidimensional Conservation Laws with Discontinuous Flux and Applications to Uniqueness

被引:0
|
作者
Graziano Crasta
Virginia De Cicco
Guido De Philippis
Francesco Ghiraldin
机构
[1] Univ. di Roma I,Dipartimento di Matematica “G. Castelnuovo”
[2] Univ. di Roma I,Dipartimento di Scienze di Base e Applicate per l’Ingegneria
[3] Unité de Mathématiques Pure et Appliquées-ENS de Lyon,Institut für Mathematik
[4] Universität Zürich,undefined
关键词
Radon Measure; Entropy Solution; Entropy Condition; Hugoniot Condition; Weak Entropy Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given.
引用
收藏
页码:961 / 985
页数:24
相关论文
共 50 条