Free affine actions of unipotent groups on Cn

被引:0
|
作者
A. Puttmann
机构
[1] Fakultat fur Mathematik,
[2] Ruhr-Universitat Bochum,undefined
[3] 44780,undefined
来源
Transformation Groups | 2007年 / 12卷
关键词
Orbit Space; UNIPOTENT Group; Quotient Topology; Subgroup Versus; Local Trivialization;
D O I
暂无
中图分类号
学科分类号
摘要
We consider free affine actions of unipotent complex algebraic groups on Cn and prove that such actions admit an analytic geometric quotient if their degree is at most 2. Moreover, we classify free affine C2-actions on Cn of degree n - 1 and n - 2. For every n > 4, an action of degree n - 2 appears in the classification whose quotient topology is not Hausdorff.
引用
收藏
页码:137 / 151
页数:14
相关论文
共 50 条
  • [21] Fuchsian affine actions of surface groups
    Labourie, F
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 59 (01) : 15 - 31
  • [22] Affine actions on nilpotent Lie groups
    Burde, Dietrich
    Dekimpe, Karel
    Deschamps, Sandra
    FORUM MATHEMATICUM, 2009, 21 (05) : 921 - 934
  • [23] Entropy and affine actions for surface groups
    Labourie, Francois
    JOURNAL OF TOPOLOGY, 2022, 15 (03) : 1017 - 1033
  • [24] SOLVABLE GROUPS AND AFFINE ACTIONS ON THE LINE
    Brum, Joaquin
    Bon, NICOLaS M. A. T. T. E.
    Rivas, Cristobal
    Triestino, Michele
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2025, 12
  • [25] On enveloping semigroups of nilpotent group actions generated by unipotent affine transformations of the torus
    Pikula, Rafal
    STUDIA MATHEMATICA, 2010, 201 (02) : 133 - 153
  • [26] Hypercyclic Abelian Groups of Affine Maps on Cn
    Ayadi, Adlene
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (03): : 477 - 490
  • [27] Free groups generated by two unipotent maps
    Jiang, Chao
    Xie, Baohua
    FORUM MATHEMATICUM, 2025, 37 (02) : 443 - 458
  • [28] Free by cyclic groups and linear groups with restricted unipotent elements
    Button J.O.
    Button, Jack O. (j.o.button@dpmms.cam.ac.uk), 1600, Walter de Gruyter GmbH (09): : 137 - 149
  • [29] LOCALLY FREE ACTIONS OF THE AFFINE GROUP
    GHYS, E
    INVENTIONES MATHEMATICAE, 1985, 82 (03) : 479 - 526
  • [30] Rationality of quotients by linear actions of affine groups
    BOGOMOLOV Fedor
    BHNING Christian
    GRAF VON BOTHMER Hans-Christian
    ScienceChina(Mathematics), 2011, 54 (08) : 1521 - 1532