Oscillation in a posteriori error estimation

被引:0
|
作者
Christian Kreuzer
Andreas Veeser
机构
[1] Technische Universität Dortmund,Fakultät für Mathematik
[2] Università degli Studi di Milano,Dipartimento di Matematica
来源
Numerische Mathematik | 2021年 / 148卷
关键词
65N15; 65N30; 65N12; 65N50; 41A05; 41A63;
D O I
暂无
中图分类号
学科分类号
摘要
In a posteriori error analysis, the relationship between error and estimator is usually spoiled by so-called oscillation terms, which cannot be bounded by the error. In order to remedy, we devise a new approach where the oscillation has the following two properties. First, it is dominated by the error, irrespective of mesh fineness and the regularity of data and the exact solution. Second, it captures in terms of data the part of the residual that, in general, cannot be quantified with finite information. The new twist in our approach is a locally stable projection onto discretized residuals.
引用
收藏
页码:43 / 78
页数:35
相关论文
共 50 条
  • [41] A-posteriori error estimation in axisymmetric geotechnical analyses
    El-Hamalawi, A
    Bolton, MD
    COMPUTERS AND GEOTECHNICS, 2002, 29 (08) : 587 - 607
  • [42] Application of a posteriori error estimation for structural model updating
    Ladevèze, P
    Chouaki, A
    INVERSE PROBLEMS, 1999, 15 (01) : 49 - 58
  • [43] A unified framework for a posteriori error estimation for the Stokes problem
    Antti Hannukainen
    Rolf Stenberg
    Martin Vohralík
    Numerische Mathematik, 2012, 122 : 725 - 769
  • [44] Practical methods for a posteriori error estimation in engineering applications
    Prudhomme, S
    Oden, JT
    Westermann, T
    Bass, J
    Botkin, ME
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 56 (08) : 1193 - 1224
  • [45] A postprocessor for a posteriori error estimation of computed flow parameters
    Alekseev A.K.
    Zhurin S.V.
    Computational Mathematics and Mathematical Physics, 2006, 46 (9) : 1623 - 1628
  • [46] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [47] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [48] A posteriori error estimation for standard finite element analysis
    Diez, P
    Egozcue, JJ
    Huerta, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 163 (1-4) : 141 - 157
  • [49] A posteriori error estimation based on discrepancies in an entropy variable
    Andrews, JG
    Morton, KW
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1998, 10 (03) : 183 - 198
  • [50] A posteriori error estimation for acoustic wave propagation problems
    J. Tinsley Oden
    Serge Prudhomme
    Leszek Demkowicz
    Archives of Computational Methods in Engineering, 2005, 12 : 343 - 389