On Groups with Frobenius Elements

被引:0
|
作者
A. M. Popov
机构
[1] Krasnoyarsk State Technical University,
来源
Acta Applicandae Mathematica | 2005年 / 85卷
关键词
Frobenius group; -Frobenius element; kernel; complement; involution;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that group G contains an Abelian normal periodic complement to CG(a2) if a is an H-Frobenius element a of order 4 of G.
引用
收藏
页码:257 / 264
页数:7
相关论文
共 50 条
  • [21] PERIODIC FROBENIUS GROUPS
    Lytkina, D. V.
    Mazurov, V. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (06) : 1351 - 1355
  • [22] ON INFINITE GROUPS OF FROBENIUS
    GORCHAKOV, IM
    DOKLADY AKADEMII NAUK SSSR, 1963, 152 (04): : 787 - &
  • [23] PROFINITE FROBENIUS GROUPS
    GILDENHUYS, D
    HERFORT, W
    RIBES, L
    ARCHIV DER MATHEMATIK, 1980, 33 (06) : 518 - 528
  • [24] HYPERNORMALIZING FROBENIUS GROUPS
    DOLFI, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1991, 5B (03): : 521 - 543
  • [25] Double Frobenius groups
    V. A. Antonov
    S. G. Chekanov
    Proceedings of the Steklov Institute of Mathematics, 2007, 257 (Suppl 1) : S1 - S9
  • [26] GENERALIZED FROBENIUS GROUPS
    CHILLAG, D
    MACDONALD, ID
    ISRAEL JOURNAL OF MATHEMATICS, 1984, 47 (2-3) : 111 - 122
  • [27] Periodic Frobenius Groups
    D. V. Lytkina
    V. D. Mazurov
    Siberian Mathematical Journal, 2023, 64 : 1351 - 1355
  • [28] Modular Frobenius groups
    Kuisch, EB
    vanderWaall, RW
    MANUSCRIPTA MATHEMATICA, 1996, 90 (04) : 403 - 427
  • [29] Double Frobenius groups
    Antonov, V. A.
    Chekanov, S. G.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2007, 13 (01): : 3 - 10
  • [30] On Groups with a Frobenius Element
    A. I. Sozutov
    E. B. Durakov
    Siberian Mathematical Journal, 2018, 59 : 938 - 946