In this paper we provide an ansatz that reduces a pseudo-Riemannian gradient Ricci almost soliton (PDE) into an integrable system of ODE. First, considering a warped structure with conformally flat base invariant under the action of an (n-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(n-1)$$\end{document}-dimensional translation group and semi-Riemannian Einstein fiber, we provide the ODE system which characterizes all such solitons. Then, we also provide a classification for a conformally flat pseudo-Riemannian gradient Ricci almost soliton invariant by the actions of a translation group or a pseudo-orthogonal group. Finally, we conclude with some explicit examples.