Sharp Upper Bounds on the k-Independence Number in Graphs with Given Minimum and Maximum Degree

被引:0
|
作者
Suil O
Yongtang Shi
Zhenyu Taoqiu
机构
[1] The State University of New York,Department of Applied Mathematics and Statistics
[2] Nankai University,Center for Combinatorics and LPMC
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-independence number; Independence number; Chromatic number; -distance chromatic number; Regular graphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
The k-independence number of a graph G is the maximum size of a set of vertices at pairwise distance greater than k. In this paper, for each positive integer k, we prove sharp upper bounds for the k-independence number in an n-vertex connected graph with given minimum and maximum degree.
引用
收藏
页码:393 / 408
页数:15
相关论文
共 50 条
  • [21] On the Independence Number of Graphs with Maximum Degree 3
    Kanj, Iyad A.
    Zhang, Fenghui
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 238 - +
  • [22] Wiener index in graphs with given minimum degree and maximum degree
    Alochukwu, Alex
    Dankelmann, Peter
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (01):
  • [23] SPECTRAL UPPER BOUND ON THE QUANTUM K-INDEPENDENCE NUMBER OF A GRAPH
    Wocjan, Pawel
    Elphick, Clive
    Abiad, Aida
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 331 - 338
  • [24] Optimal Graphs for Independence and k-Independence Polynomials
    J. I. Brown
    D. Cox
    Graphs and Combinatorics, 2018, 34 : 1445 - 1457
  • [25] Improved Upper Bounds on the Domination Number of Graphs With Minimum Degree at Least Five
    Bujtas, Csilla
    Klavzar, Sandi
    GRAPHS AND COMBINATORICS, 2016, 32 (02) : 511 - 519
  • [26] Improved Upper Bounds on the Domination Number of Graphs With Minimum Degree at Least Five
    Csilla Bujtás
    Sandi Klavžar
    Graphs and Combinatorics, 2016, 32 : 511 - 519
  • [27] Graphs with the minimum spectral radius for given independence number
    Hu, Yarong
    Huang, Qiongxiang
    Lou, Zhenzhen
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [28] The minimum spectral radius of graphs with a given independence number
    Xu, Mimi
    Hong, Yuan
    Shu, Jinlong
    Zhai, Mingqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 937 - 945
  • [29] IMPROVED LOWER BOUNDS ON K-INDEPENDENCE
    CARO, Y
    TUZA, Z
    JOURNAL OF GRAPH THEORY, 1991, 15 (01) : 99 - 107
  • [30] Optimal Graphs for Independence and k-Independence Polynomials
    Brown, J. I.
    Cox, D.
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1445 - 1457