Sharp Upper Bounds on the k-Independence Number in Graphs with Given Minimum and Maximum Degree

被引:0
|
作者
Suil O
Yongtang Shi
Zhenyu Taoqiu
机构
[1] The State University of New York,Department of Applied Mathematics and Statistics
[2] Nankai University,Center for Combinatorics and LPMC
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
-independence number; Independence number; Chromatic number; -distance chromatic number; Regular graphs; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
The k-independence number of a graph G is the maximum size of a set of vertices at pairwise distance greater than k. In this paper, for each positive integer k, we prove sharp upper bounds for the k-independence number in an n-vertex connected graph with given minimum and maximum degree.
引用
收藏
页码:393 / 408
页数:15
相关论文
共 50 条
  • [1] Sharp Upper Bounds on the k-Independence Number in Graphs with Given Minimum and Maximum Degree
    Suil, O.
    Shi, Yongtang
    Taoqiu, Zhenyu
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 393 - 408
  • [2] Graphs with given k-independence number
    Wang, Zhao
    Cai, Junliang
    Mao, Yaping
    UTILITAS MATHEMATICA, 2018, 106 : 51 - 64
  • [3] Sharp bounds for the Randic index of graphs with given minimum and maximum degree
    Suil, O.
    Shi, Yongtang
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 111 - 115
  • [4] On the k-independence number of graphs
    Abiad, A.
    Coutinho, G.
    Fiol, M. A.
    DISCRETE MATHEMATICS, 2019, 342 (10) : 2875 - 2885
  • [5] Maximum spectral radius of graphs with given connectivity, minimum degree and independence number
    Lu, Hongliang
    Lin, Yuqing
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 31 : 113 - 119
  • [6] On the k-independence number in graphs
    Bouchou, Ahmed
    Blidia, Mostafa
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 311 - 322
  • [7] Lower bounds for the independence and k-independence number of graphs using the concept of degenerate degrees
    Zaker, Manouchehr
    DISCRETE APPLIED MATHEMATICS, 2016, 203 : 204 - 216
  • [8] Spectral bounds for the k-independence number of a graph
    Abiad, Aida
    Cioaba, Sebastian M.
    Tait, Michael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 160 - 170
  • [9] ON THE SIGNED (TOTAL) k-INDEPENDENCE NUMBER IN GRAPHS
    Khodkar, Abdollah
    Samadi, Babak
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 651 - 662
  • [10] Bounds on the k-independence and k-chromatic numbers of graphs
    Blidia, Mostafa
    Bouchou, Ahmed
    Volkmann, Lutz
    ARS COMBINATORIA, 2014, 113 : 33 - 46