New Directions in Representation Theory

被引:0
|
作者
Charles W. Curtis
机构
[1] University of Oregon,Department of Mathematics
来源
关键词
Primary 20C08; 17B37; Secondary20C33; 17B10; Chevalley groups; Iwahori–Hecke algebras; quantized enveloping algebras; Ringel–Hall algebras;
D O I
暂无
中图分类号
学科分类号
摘要
The Iwahori–Hecke algebra H(G, B) of a finite Chevalley group G with respect to a Borel subgroup B is described as a deformation of the group algebra of the Weyl group of G Similarly, the +-part of the quantized enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{U^+_v (\mathfrak{g})}}$$\end{document} associated with a semisimple Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{g}}}$$\end{document} can be viewed as a deformation of the +-part of the universal enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{U(\mathfrak{g})}}$$\end{document} . In both cases it is shown how information concerning the deformed algebras H(G, B) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{U^+_v (\mathfrak{g})}}$$\end{document} can be used to obtain results about the representation theory of the Chevalley group G and the semisimple Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{g}}}$$\end{document} .
引用
收藏
页码:151 / 167
页数:16
相关论文
共 50 条