New Directions in Representation Theory

被引:0
|
作者
Charles W. Curtis
机构
[1] University of Oregon,Department of Mathematics
来源
关键词
Primary 20C08; 17B37; Secondary20C33; 17B10; Chevalley groups; Iwahori–Hecke algebras; quantized enveloping algebras; Ringel–Hall algebras;
D O I
暂无
中图分类号
学科分类号
摘要
The Iwahori–Hecke algebra H(G, B) of a finite Chevalley group G with respect to a Borel subgroup B is described as a deformation of the group algebra of the Weyl group of G Similarly, the +-part of the quantized enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{U^+_v (\mathfrak{g})}}$$\end{document} associated with a semisimple Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{g}}}$$\end{document} can be viewed as a deformation of the +-part of the universal enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{U(\mathfrak{g})}}$$\end{document} . In both cases it is shown how information concerning the deformed algebras H(G, B) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{U^+_v (\mathfrak{g})}}$$\end{document} can be used to obtain results about the representation theory of the Chevalley group G and the semisimple Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{g}}}$$\end{document} .
引用
收藏
页码:151 / 167
页数:16
相关论文
共 50 条
  • [1] New Directions in Representation Theory
    Curtis, Charles W.
    MILAN JOURNAL OF MATHEMATICS, 2012, 80 (01) : 151 - 167
  • [2] New directions in Information Theory
    Benedetto, Sergio
    Caire, Giuseppe
    Koetter, Ralf
    Urbanke, Ruediger
    EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 2008, 19 (04): : 329 - 332
  • [3] NEW DIRECTIONS IN SCHEDULING THEORY
    LENSTRA, JK
    KAN, AHGR
    OPERATIONS RESEARCH LETTERS, 1984, 2 (06) : 255 - 259
  • [4] New Directions in Criminological Theory
    McLuhan, Arthur
    ASIAN JOURNAL OF CRIMINOLOGY, 2014, 9 (04) : 329 - 330
  • [5] NEW DIRECTIONS IN AFFECT THEORY
    LESTER, EP
    JOURNAL OF THE AMERICAN PSYCHOANALYTIC ASSOCIATION, 1982, 30 (01) : 197 - 211
  • [6] New directions in Ramsey theory
    Chartrand, Gary
    Zhang, Ping
    DISCRETE MATHEMATICS LETTERS, 2021, 6 : 84 - 96
  • [7] New directions in particle theory
    Veneziano, G
    INTERNATIONAL EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, 1999, : 324 - 336
  • [8] New directions in martensite theory
    Olson, GB
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 273 : 11 - 20
  • [9] New directions in martensite theory
    Olson, G.B.
    Materials Science and Engineering A, 1999, 273 : 11 - 20
  • [10] New directions in planning theory
    Fainstein, SS
    URBAN AFFAIRS REVIEW, 2000, 35 (04) : 451 - 478