Computing eigenvalues of semi-infinite quasi-Toeplitz matrices

被引:0
|
作者
D. A. Bini
B. Iannazzo
B. Meini
J. Meng
L. Robol
机构
[1] University of Pisa,
[2] University of Perugia,undefined
[3] Ocean University of China,undefined
来源
Numerical Algorithms | 2023年 / 92卷
关键词
Toeplitz matrices; Eigenvalues; Infinite matrices; Nonlinear eigenvalue problem; MATLAB; Operators; Spectrum; 15A18; 15B05; 47A75; 65F15; 65H17;
D O I
暂无
中图分类号
学科分类号
摘要
A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the form A=T(a)+E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=T(a)+E$$\end{document} where T(a) is the Toeplitz matrix with entries (T(a))i,j=aj-i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T(a))_{i,j}=a_{j-i}$$\end{document}, for aj-i∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{j-i}\in \mathbb {C}$$\end{document}, i,j≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i,j\ge 1$$\end{document}, while E is a matrix representing a compact operator in ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}. The matrix A is finitely representable if ak=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_k=0$$\end{document} for k<-m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k<-m$$\end{document} and for k>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>n$$\end{document}, given m,n>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n>0$$\end{document}, and if E has a finite number of nonzero entries. The problem of numerically computing eigenpairs of a finitely representable QT matrix is investigated, i.e., pairs (λ,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,\varvec{v})$$\end{document} such that Av=λv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\varvec{v}=\lambda \varvec{v}$$\end{document}, with λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {C}$$\end{document}, v=(vj)j∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}=(v_j)_{j\in \mathbb {Z}^+}$$\end{document}, v≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}\ne 0$$\end{document}, and ∑j=1∞|vj|2<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum }_{j=1}^\infty |v_j|^2<\infty$$\end{document}. It is shown that the problem is reduced to a finite nonlinear eigenvalue problem of the kind WU(λ)β=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )\varvec{\beta }=0$$\end{document}, where W is a constant matrix and U depends on λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} and can be given in terms of either a Vandermonde matrix or a companion matrix. Algorithms relying on Newton’s method applied to the equation det WU(λ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WU(\lambda )=0$$\end{document} are analyzed. Numerical experiments show the effectiveness of this approach. The algorithms have been included in the CQT-Toolbox [Numer. Algorithms 81 (2019), no. 2, 741–769].
引用
收藏
页码:89 / 118
页数:29
相关论文
共 50 条
  • [41] EIGENVALUES FOR INFINITE MATRICES
    SHIVAKUMAR, PN
    WILLIAMS, JJ
    RUDRAIAH, N
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 96 : 35 - 63
  • [42] Eigenvalues for a self-equilibrated , semi-infinite anisotropic elastic strip
    Crafter, E.C.
    Heise, R.M.
    Horgan, C.O.
    Simmonds, J.G.
    Journal of Applied Mechanics, Transactions ASME, 1993, 60 (02): : 276 - 281
  • [44] On the Two Spectra Inverse Problem for Semi-infinite Jacobi Matrices
    Luis O. Silva
    Ricardo Weder
    Mathematical Physics, Analysis and Geometry, 2006, 9 : 263 - 290
  • [45] On the two spectra inverse problem for semi-infinite Jacobi matrices
    Silva, Luis O.
    Weder, Ricardo
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2006, 9 (03) : 263 - 290
  • [46] EIGENVALUES OF TOEPLITZ MATRICES IN THE BULK OF THE SPECTRUM
    Deift, P.
    Its, A.
    Krasovsky, I.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2012, 7 (04): : 437 - 461
  • [49] On tropical eigenvalues of tridiagonal Toeplitz matrices
    Tavakolipour, Hanieh
    Shakeri, Fatemeh
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 198 - 218
  • [50] Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
    Dai, Hui
    Geary, Zachary
    Kadanoff, Leo P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,