The Picard–Lefschetz formula for p-adic cohomology

被引:0
|
作者
Yoichi Mieda
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Mathematische Zeitschrift | 2007年 / 257卷
关键词
Rigid cohomology; The Picard–Lefschetz formula; Primary 14F30; Secondary 14D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss a p-adic analogue of the Picard–Lefschetz formula. For a family with ordinary double points over a complete discrete valuation ring of mixed characteristic (0,p), we construct vanishing cycle modules which measure the difference between the rigid cohomology groups of the special fiber and the de Rham cohomology groups of the generic fiber. Furthermore, the monodromy operators on the de Rham cohomology groups of the generic fiber are described by the canonical generators of the vanishing cycle modules in the same way as in the case of the ℓ-adic (or classical) Picard–Lefschetz formula. For the construction and the proof, we use the logarithmic de Rham–Witt complexes and those weight filtrations investigated by Mokrane (Duke Math. J. 72(2):301–337, 1993).
引用
收藏
页码:403 / 425
页数:22
相关论文
共 50 条
  • [41] A P-ADIC FIXED POINT FORMULA
    REICH, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 248 - &
  • [42] Unramified cohomology on a smooth p-adic curve
    Ducros, A
    COMPOSITIO MATHEMATICA, 2002, 130 (01) : 89 - 117
  • [43] p-adic etale cohomology of period domains
    Colmez, Pierre
    Dospinescu, Gabriel
    Hauseux, Julien
    Niziol, Wieslawa
    MATHEMATISCHE ANNALEN, 2021, 381 (1-2) : 105 - 180
  • [44] Completed cohomology and the p-adic Langlands program
    Emerton, Matthew
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 319 - 342
  • [45] A p-adic analogue of a formula of Ramanujan
    Dermot McCarthy
    Robert Osburn
    Archiv der Mathematik, 2008, 91 : 492 - 504
  • [46] Cohomology of the Weil group of a p-adic field
    Karpuk, David A.
    JOURNAL OF NUMBER THEORY, 2013, 133 (04) : 1270 - 1288
  • [47] Rigid syntomic cohomology and p-adic polylogarithms
    Bannai, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 529 : 205 - 237
  • [48] On the cohomology of integral p-adic unipotent radicals
    Ronchetti, Niccolo
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (10) : 4186 - 4213
  • [49] p-adic étale cohomology of period domains
    Pierre Colmez
    Gabriel Dospinescu
    Julien Hauseux
    Wiesława Nizioł
    Mathematische Annalen, 2021, 381 : 105 - 180
  • [50] Cohomology of tori over p-adic curves
    Scheiderer, C
    van Hamel, J
    MATHEMATISCHE ANNALEN, 2003, 326 (01) : 155 - 183