Subgradient Algorithm on Riemannian Manifolds

被引:0
|
作者
O. P. Ferreira
P. R. Oliveira
机构
[1] Universidade Federal de Goiás,Instituto de Matemática e Estatistica
[2] Universidade Federal do Rio de Janeiro,Programa de Engenharia de Sistemas e Computação, COPPE
关键词
Nondifferentiable optimization; convex programming; subgradient methods; Riemannian manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
The subgradient method is generalized to the context of Riemannian manifolds. The motivation can be seen in non-Euclidean metrics that occur in interior-point methods. In that frame, the natural curves for local steps are the geodesies relative to the specific Riemannian manifold. In this paper, the influence of the sectional curvature of the manifold on the convergence of the method is discussed, as well as the proof of convergence if the sectional curvature is nonnegative.
引用
收藏
页码:93 / 104
页数:11
相关论文
共 50 条
  • [41] A two-step algorithm of smooth spline generation on Riemannian manifolds
    Jakubiak, Janusz
    Leite, Fatima Silva
    Rodrigues, Rui C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (02) : 177 - 191
  • [42] Algorithm for creating Voronoi diagrams for two-dimensional riemannian manifolds
    Cheng, Dan
    Yang, Qin
    Li, Ji-Gang
    Cai, Qiang
    Ruan Jian Xue Bao/Journal of Software, 2009, 20 (09): : 2407 - 2416
  • [43] SUBMANIFOLDS OF RIEMANNIAN MANIFOLDS
    HSIUNG, CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A653 - &
  • [44] COMMUTATIVE RIEMANNIAN MANIFOLDS
    RUSE, HS
    TENSOR, 1972, 26 : 180 - 184
  • [46] On the symmetry of Riemannian manifolds
    Deng, Shaoqiang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 680 : 235 - 256
  • [47] On δ-homogeneous Riemannian manifolds
    Berestovskii, V. N.
    Nikonorov, Yu. G.
    DOKLADY MATHEMATICS, 2007, 76 (01) : 596 - 598
  • [48] Mechanics on Riemannian manifolds
    Oliva, WM
    NONLINEAR ANALYSIS AND ITS APPLICATIONS TO DIFFERENTIAL EQUATIONS, 2001, 43 : 65 - 84
  • [49] CONVEXITY IN RIEMANNIAN MANIFOLDS
    TRIBUZY, I
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1978, 50 (03): : 269 - 271
  • [50] Separability in Riemannian Manifolds
    Benenti, Sergio
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12