Gap solitons in a one-dimensional driven-dissipative topological lattice

被引:0
|
作者
Nicolas Pernet
Philippe St-Jean
Dmitry D. Solnyshkov
Guillaume Malpuech
Nicola Carlon Zambon
Quentin Fontaine
Bastian Real
Omar Jamadi
Aristide Lemaître
Martina Morassi
Luc Le Gratiet
Téo Baptiste
Abdelmounaim Harouri
Isabelle Sagnes
Alberto Amo
Sylvain Ravets
Jacqueline Bloch
机构
[1] Université Paris-Saclay,
[2] CNRS,undefined
[3] Centre de Nanosciences et de Nanotechnologies (C2N),undefined
[4] Institut Pascal,undefined
[5] PHOTON-N2,undefined
[6] Université Clermont Auvergne,undefined
[7] CNRS,undefined
[8] SIGMA Clermont,undefined
[9] Institut Universitaire de France (IUF),undefined
[10] Université de Lille,undefined
[11] CNRS,undefined
[12] Laboratoire de Physique des Lasers Atomes et Molécules (PhLAM),undefined
来源
Nature Physics | 2022年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear topological photonics is an emerging field that aims to extend the fascinating properties of topological states to a regime where interactions between the system constituents cannot be neglected. Interactions can trigger topological phase transitions, induce symmetry protection and robustness properties for the many-body system. Here, we report the nonlinear response of a polariton lattice that implements a driven-dissipative version of the Su–Schrieffer–Heeger model. We first demonstrate the formation of topological gap solitons bifurcating from a linear topological edge state. We then focus on the formation of gap solitons in the bulk of the lattice and show that they exhibit robust nonlinear properties against defects, owing to the underlying sublattice symmetry. Leveraging the driven-dissipative nature of the system, we discover a class of bulk gap solitons with high sublattice polarization. We show that these solitons provide an all-optical way to create a non-trivial interface for Bogoliubov excitations. Our results show that coherent driving can be exploited to stabilize new nonlinear phases and establish dissipatively stabilized solitons as a powerful resource for topological photonics.
引用
收藏
页码:678 / 684
页数:6
相关论文
共 50 条
  • [21] Features of propagation and interaction of one-dimensional topological solitons in crystals
    Arakelyan, M. M.
    Avetyan, K. T.
    Nazaryan, E. A.
    DAYS ON DIFFRACTION 2007, 2007, : 10 - 12
  • [22] Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice
    Owen, E. T.
    Jin, J.
    Rossini, D.
    Fazio, R.
    Hartmann, M. J.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [23] Lasing in topological edge states of a one-dimensional lattice
    P. St-Jean
    V. Goblot
    E. Galopin
    A. Lemaître
    T. Ozawa
    L. Le Gratiet
    I. Sagnes
    J. Bloch
    A. Amo
    Nature Photonics, 2017, 11 : 651 - 656
  • [24] Topological Charge Pumping in a One-Dimensional Optical Lattice
    Wang, Lei
    Troyer, Matthias
    Dai, Xi
    PHYSICAL REVIEW LETTERS, 2013, 111 (02)
  • [25] Topological characterization of a one-dimensional optical lattice with a force
    Shen, Xin
    Li, Zhi
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [26] Lasing in topological edge states of a one-dimensional lattice
    St-Jean, P.
    Goblot, V.
    Galopin, E.
    Lemaitre, A.
    Ozawa, T.
    Le Gratiet, L.
    Sagnes, I.
    Bloch, J.
    Amo, A.
    NATURE PHOTONICS, 2017, 11 (10) : 651 - +
  • [27] MAGNETIC GAP SOLITONS IN A ONE-DIMENSIONAL HEISENBERG ANTIFERROMAGNETIC CHAIN
    CHUBYKALO, OA
    PHYSICS LETTERS A, 1994, 189 (05) : 403 - 408
  • [28] Decay Kinetics of Photoinduced Solitons on a One-Dimensional Lattice with Traps
    Tabata, Yoshinori
    Kuroda, Noritaka
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (03)
  • [29] Interface solitons in one-dimensional locally coupled lattice systems
    Hadzievski, Lj.
    Gligoric, G.
    Maluckov, A.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [30] Gap solitons and their linear stability in one-dimensional periodic media
    Hwang, Guenbo
    Akylas, T. R.
    Yang, Jianke
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (12) : 1055 - 1068