Type-2 fuzzy variables and their arithmetic

被引:0
|
作者
Zhi-Qiang Liu
Yan-Kui Liu
机构
[1] City University of Hong Kong,School of Creative Media
[2] Hebei University,College of Mathematics and Computer Science
来源
Soft Computing | 2010年 / 14卷
关键词
Fuzzy possibility theory; Fuzzy possibility space; T2 fuzzy variable; Fuzzy possibility distribution function; Product fuzzy possibility measure; T2 fuzzy arithmetic;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes an axiomatic framework from which we develop the theory of type-2 (T2) fuzziness, called fuzzy possibility theory. First, we introduce the concept of a fuzzy possibility measure in a fuzzy possibility space (FPS). The fuzzy possibility measure takes on regular fuzzy variable (RFV) values, so it generalizes the scalar possibility measure in the literature. One of the interesting consequences of the FPS is that it leads to a new definition of T2 fuzzy set on the Euclidean space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Re^m,$$\end{document} which we call T2 fuzzy vector, as a map to the space instead of on the space. More precisely, we define a T2 fuzzy vector as a measurable map from an FPS to the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Re^m$$\end{document} of real vectors. In the current development, we are suggesting that T2 fuzzy vector is a more appropriate definition for a T2 fuzzy set on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Re^m.$$\end{document} In the literature, a T2 fuzzy set is usually defined via its T2 membership function, whereas in this paper, we obtain the T2 possibility distribution function as the transformation of a fuzzy possibility measure from a universe to the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Re^m$$\end{document} via T2 fuzzy vector. Second, we develop the product fuzzy possibility theory. In this part, we give a general extension theorem about product fuzzy possibility measure from a class of measurable atom-rectangles to a product ample field, and discuss the relationship between a T2 fuzzy vector and T2 fuzzy variables. We also prove two useful theorems about the existence of an FPS and a T2 fuzzy vector based on the information from a finite number of RFV-valued maps. The two results provide the possible interpretations for the concepts of the FPS and the T2 fuzzy vector, and thus reinforce the credibility of the approach developed in this paper. Finally, we deal with the arithmetic of T2 fuzzy variables in fuzzy possibility theory. We divide our discussion into two cases according to whether T2 fuzzy variables are defined on single FPS or on different FPSs, and obtain two theorems about T2 fuzzy arithmetic.
引用
收藏
页码:729 / 747
页数:18
相关论文
共 50 条
  • [31] Defuzzification and application of trapezoidal type-2 fuzzy variables to green solid transportation problem
    Das, Amrit
    Bera, Uttam Kumar
    Maiti, Manoranjan
    SOFT COMPUTING, 2018, 22 (07) : 2275 - 2297
  • [32] Shadowed Type-2 Fuzzy Sets - Type-2 Fuzzy Sets with Shadowed Secondary Membership Functions
    Linda, Ondrej
    Manic, Milos
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [33] Extending Similarity Measures of Interval Type-2 Fuzzy Sets to General Type-2 Fuzzy Sets
    McCulloch, Josie
    Wagner, Christian
    Aickelin, Uwe
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [34] Short Remark on Fuzzy Sets, Interval Type-2 Fuzzy Sets, General Type-2 Fuzzy Sets and Intuitionistic Fuzzy Sets
    Castillo, Oscar
    Melin, Patricia
    Tsvetkov, Radoslav
    Atanassov, Krassimir T.
    INTELLIGENT SYSTEMS'2014, VOL 1: MATHEMATICAL FOUNDATIONS, THEORY, ANALYSES, 2015, 322 : 183 - 190
  • [35] Operations on type-2 fuzzy sets
    Karnik, NN
    Mendel, JM
    FUZZY SETS AND SYSTEMS, 2001, 122 (02) : 327 - 348
  • [36] Type-2 fuzzy linear systems
    Najariyan M.
    Mazandarani M.
    John R.
    Mazandarani, Mehran (me.mazandarani@gmail.com), 1600, Springer Nature (02): : 175 - 186
  • [37] Type-2 fuzzy Bezier surface
    Zakaria, Rozaimi
    Wahab, Abd Fatah
    International Journal of Applied Mathematics and Statistics, 2013, 40 (10): : 45 - 71
  • [38] Type-2 fuzzy description logic
    Li, Ruixuan
    Wen, Kunmei
    Gu, Xiwu
    Li, Yuhua
    Sun, Xiaolin
    Li, Bing
    FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2011, 5 (02): : 205 - 215
  • [39] Type-2 Fuzzy Entropy Sets
    De Miguel, Laura
    Santos, Helida
    Sesma-Sara, Mikel
    Bedregal, Benjamin
    Jurio, Aranzazu
    Bustince, Humberto
    Hagras, Hani
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (04) : 993 - 1005
  • [40] Type-2 fuzzy sets applications
    Takacs, Marta
    Nagy, Karoly
    2008 6TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS, 2008, : 72 - +