Kernel based local matching network for video object segmentation

被引:0
|
作者
Guoqiang Wang
Lan Li
Min Zhu
Rui Zhao
Xiang Zhang
机构
[1] Sichuan University,
[2] University of Electronic Science and Technology of China,undefined
[3] Shenzhen Polytechnic University,undefined
来源
Machine Vision and Applications | 2024年 / 35卷
关键词
Video object segmentation; Sapce-time memory network; Kernel guidance;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the methods based on space-time memory network have achieved advanced performance in semi-supervised video object segmentation, which has attracted wide attention. However, this kind of methods still have a fatal limitation. It has the interference problem of similar objects caused by the way of non-local matching, which seriously limits the performance of video object segmentation. To solve this problem, we propose a Kernel-guided Attention Matching Network (KAMNet) by the use of local matching instead of non-local matching. At first, KAMNet uses spatio-temporal attention mechanism to enhance the model’s discrimination between foreground objects and background areas. Then KAMNet utilizes gaussian kernel to guide the matching between the current frame and the reference set. Because the gaussian kernel decays away from the center, it can limit the matching to the central region, thus achieving local matching. Our KAMNet gets speed-accuracy trade-off on benchmark datasets DAVIS 2016 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 87.6%) and DAVIS 2017 (J&F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {J \& F}$$\end{document} of 76.0%) with 0.12 second per frame.
引用
收藏
相关论文
共 50 条
  • [21] Modulated Memory Network for Video Object Segmentation
    Lu, Hannan
    Guo, Zixian
    Zuo, Wangmeng
    MATHEMATICS, 2024, 12 (06)
  • [22] Video Object Segmentation using Point-based Memory Network
    Gao, Mingqi
    Han, Jungong
    Zheng, Feng
    Yu, James J. Q.
    Montana, Giovanni
    PATTERN RECOGNITION, 2023, 134
  • [23] Dual Attention Based Network with Hierarchical ConvLSTM for Video Object Segmentation
    Zhao, Zongji
    Zhao, Sanyuan
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 323 - 335
  • [24] LGFF-Net: Airport Video Object Segmentation based on Local-Global Feature Fusion Network
    Wu, Honggang
    Li, Wenjing
    Wu, Min
    Zhang, Xiang
    PROCEEDINGS OF 2020 IEEE 2ND INTERNATIONAL CONFERENCE ON CIVIL AVIATION SAFETY AND INFORMATION TECHNOLOGY (ICCASIT), 2020, : 746 - 752
  • [25] Image Matching Based on Local Object Matching
    Li Q.
    You X.
    Li K.
    Tang F.
    Wang W.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2022, 47 (03): : 419 - 427
  • [26] Video object segmentation through semantic visual words matching
    Hao, Chuanyan
    Chen, Yadang
    Wu, Weimin
    Yang, Zhi-Xin
    Wu, Enhua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (13) : 19591 - 19605
  • [27] Pixel-Level Bijective Matching for Video Object Segmentation
    Cho, Suhwan
    Lee, Heansung
    Kim, Minjung
    Jang, Sungjun
    Lee, Sangyoun
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1453 - 1462
  • [28] Video object segmentation through semantic visual words matching
    Chuanyan Hao
    Yadang Chen
    Weimin Wu
    Zhi-Xin Yang
    Enhua Wu
    Multimedia Tools and Applications, 2023, 82 : 19591 - 19605
  • [29] Spectral Context Matching for Video Object Segmentation Under Occlusion
    Shi, Xiaoxue
    Lu, Yao
    Zhou, Tianfei
    Lei, Xiaoyu
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 337 - 346
  • [30] Complementary Coarse-to-Fine Matching for Video Object Segmentation
    Chen, Zhen
    Yang, Ming
    Zhang, Shiliang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (06)