Jackson Theorems for the Quaternion Linear Canonical transform

被引:0
|
作者
A. Achak
O. Ahmad
A. Belkhadir
R. Daher
机构
[1] University Chouaib Doukkali,Ecole Supérieure d’Education et Formation
[2] National Institute of Technology Srinagar,Department of Mathematics
[3] Ain Chock University of Hassan II,Department of Mathematics, Faculty of Sciences
来源
关键词
Quaternion linear canonical transform; Generalized modulus of continuity; Dini–Lipschitz class; Bernstein theorem; Jackson’s theorem; Primary 43A62; 42B10; Secondary 42B37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish Bernstein inequality, Jackson’s direct and inverse theorems for quaternion linear canonical transform using the functions with bounded spectrum.
引用
收藏
相关论文
共 50 条
  • [21] Convolution theorems for the linear canonical transform and their applications
    Bing Deng
    Ran Tao
    Yue Wang
    Science in China Series F: Information Sciences, 2006, 49 : 592 - 603
  • [22] Generalized uncertainty principles for offset quaternion linear canonical transform
    Bahri, Mawardi
    JOURNAL OF ANALYSIS, 2024, 32 (5): : 2525 - 2538
  • [23] One dimensional quaternion linear canonical transform in probability theory
    Siddiqui, Saima
    Samad, Muhammad Adnan
    Ismoiljonovich, Fayzullayev Djamshid
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (12) : 9419 - 9430
  • [24] Uncertainty Principle for the Quaternion Linear Canonical Transform in Terms of Covariance
    Yanna Zhang
    Journal of Beijing Institute of Technology, 2021, 30 (03) : 238 - 243
  • [25] Uncertainty principles and applications of quaternion windowed linear canonical transform
    Prasad A.
    Kundu M.
    Optik, 2023, 272
  • [26] Uncertainty principles associated with quaternion linear canonical transform and their estimates
    Kundu, Manab
    Prasad, Akhilesh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) : 4772 - 4790
  • [27] Dini-Lipschitz functions for the quaternion linear canonical transform
    Bouhlal, A.
    Achak, A.
    Daher, R.
    Safouane, N.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 199 - 215
  • [28] Uncertainty Principle for the Quaternion Linear Canonical Transform in Terms of Covariance
    Zhang Y.
    Journal of Beijing Institute of Technology (English Edition), 2021, 30 (03): : 238 - 243
  • [29] Continuous and discrete quaternion linear canonical wave packet transform?
    Rejini, M. Thanga
    Moorthy, R. Subash
    OPTIK, 2022, 270
  • [30] Plancherel Theorems of Quaternion Hilbert Transforms Associated with Linear Canonical Transforms
    Kou, Kit Ian
    Liu, Ming-Sheng
    Zou, Cuiming
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (01)