Jackson Theorems for the Quaternion Linear Canonical transform

被引:0
|
作者
A. Achak
O. Ahmad
A. Belkhadir
R. Daher
机构
[1] University Chouaib Doukkali,Ecole Supérieure d’Education et Formation
[2] National Institute of Technology Srinagar,Department of Mathematics
[3] Ain Chock University of Hassan II,Department of Mathematics, Faculty of Sciences
来源
关键词
Quaternion linear canonical transform; Generalized modulus of continuity; Dini–Lipschitz class; Bernstein theorem; Jackson’s theorem; Primary 43A62; 42B10; Secondary 42B37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish Bernstein inequality, Jackson’s direct and inverse theorems for quaternion linear canonical transform using the functions with bounded spectrum.
引用
收藏
相关论文
共 50 条
  • [1] Jackson Theorems for the Quaternion Linear Canonical transform
    Achak, A.
    Ahmad, O.
    Belkhadir, A.
    Daher, R.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (03)
  • [2] Convolution theorems associated with quaternion linear canonical transform and applications
    Hu, Xiaoxiao
    Cheng, Dong
    Kou, Kit Ian
    SIGNAL PROCESSING, 2023, 202
  • [3] A Variation on Inequality for Quaternion Fourier Transform, Modified Convolution and Correlation Theorems for General Quaternion Linear Canonical Transform
    Bahri, Mawardi
    Karim, Samsul Ariffin Abdul
    SYMMETRY-BASEL, 2022, 14 (07):
  • [4] INTRODUCTION TO QUATERNION LINEAR CANONICAL TRANSFORM
    Gudadhe, Alka S.
    Thakare, Pranay P.
    JOURNAL OF SCIENCE AND ARTS, 2014, (01): : 45 - 52
  • [5] Discrete quaternion linear canonical transform
    Urynbassarova, Didar
    Teali, Aajaz A.
    Zhang, Feng
    DIGITAL SIGNAL PROCESSING, 2022, 122
  • [6] Quaternion Fourier and linear canonical inversion theorems
    Hu, Xiao-Xiao
    Kou, Kit Ian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2421 - 2440
  • [7] A new kind of convolution, correlation and product theorems related to quaternion linear canonical transform
    Zhen-Wei Li
    Wen-Biao Gao
    Bing-Zhao Li
    Signal, Image and Video Processing, 2021, 15 : 103 - 110
  • [8] A new kind of convolution, correlation and product theorems related to quaternion linear canonical transform
    Li, Zhen-Wei
    Gao, Wen-Biao
    Li, Bing-Zhao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (01) : 103 - 110
  • [9] Spectrum of quaternion signals associated with quaternion linear canonical transform
    Prasad, Akhilesh
    Kundu, Manab
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (02): : 764 - 775
  • [10] Uncertainty Principles for The Quaternion Linear Canonical Transform
    Achak, A.
    Abouelaz, A.
    Daher, R.
    Safouane, N.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)