Sequence spaces derived by the triple band generalized Fibonacci difference operator

被引:0
|
作者
Taja Yaying
Bipan Hazarika
S. A. Mohiuddine
M. Mursaleen
Khursheed J. Ansari
机构
[1] Dera Natung Government College,Department of Mathematics
[2] Gauhati University,Department of Mathematics
[3] King Abdulaziz University,Department of General Required Courses, Mathematics, Faculty of Applied Studies
[4] King Abdulaziz University,Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science
[5] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
[6] Aligarh Muslim University,Department of Mathematics
[7] King Khalid University,Department of Mathematics, College of Science
关键词
Fibonacci difference space; Schauder basis; -, ; -, ; -duals; Matrix mappings; Compact operators; Hausdorff measure of non-compactness; 46A45; 46B45; 47B07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we introduce the generalized Fibonacci difference operator F(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{F}(\mathsf{B})$\end{document} by the composition of a Fibonacci band matrix F and a triple band matrix B(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{B}(x,y,z)$\end{document} and study the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}( \mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document}. We exhibit certain topological properties, construct a Schauder basis and determine the Köthe–Toeplitz duals of the new spaces. Furthermore, we characterize certain classes of matrix mappings from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to space Y∈{ℓ∞,c0,c,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{\ell _{\infty },c_{0},c,\ell _{1},cs_{0},cs,bs\}$\end{document} and obtain the necessary and sufficient condition for a matrix operator to be compact from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to Y∈{ℓ∞,c,c0,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{ \ell _{\infty }, c, c_{0}, \ell _{1},cs_{0},cs,bs\} $\end{document} using the Hausdorff measure of non-compactness.
引用
收藏
相关论文
共 50 条
  • [31] A GENERALIZED FIBONACCI SEQUENCE
    HORADAM, AF
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (05): : 455 - &
  • [32] Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces
    Vakeel A. Khan
    Emrah E. Kara
    Henna Altaf
    Nazneen Khan
    Mobeen Ahmad
    Journal of Inequalities and Applications, 2019
  • [33] Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces
    Khan, Vakeel A.
    Kara, Emrah E.
    Altaf, Henna
    Khan, Nazneen
    Ahmad, Mobeen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [34] NEUTROSOPHIC FUZZY I-CONVERGENT FIBONACCI DIFFERENCE SEQUENCE SPACES
    Chaurasiya, Chandan
    Ahmad, Ayaz
    Esi, Ayhan
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024,
  • [35] On q-Fibonacci Cesaro Sequence Spaces by Using Band Matrix
    Kumar, Ravi
    Sharma, Sunil K.
    Sharma, Ajay K.
    Musarleen, M.
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (01) : 201 - 208
  • [36] ON THE GENERALIZED RIESZ B-DIFFERENCE SEQUENCE SPACES
    Basarir, Metin
    FILOMAT, 2010, 24 (04) : 35 - 52
  • [37] ON THE COMPACTNESS AND SPECTRA OF THE GENERALIZED DIFFERENCE OPERATOR ON THE SPACES l∞ AND bv
    El-Shabrawy, Saad R.
    Sawano, Yoshihiro
    OPERATORS AND MATRICES, 2021, 15 (03): : 959 - 983
  • [38] On some generalized q-difference sequence spaces
    Ellidokuzoglu, Hacer Bilgin
    Demiriz, Serkan
    AIMS MATHEMATICS, 2023, 8 (08): : 18607 - 18617
  • [39] On some new type generalized difference sequence spaces
    Esi, Ayhan
    Tripathy, Binod Chandra
    Sarma, Bipul
    MATHEMATICA SLOVACA, 2007, 57 (05) : 475 - 482
  • [40] New Classes of Generalized Seminormed Difference Sequence Spaces
    Mursaleen, M.
    Alotaibi, A.
    Sharma, Sunil K.
    ABSTRACT AND APPLIED ANALYSIS, 2014,