Sequence spaces derived by the triple band generalized Fibonacci difference operator

被引:0
|
作者
Taja Yaying
Bipan Hazarika
S. A. Mohiuddine
M. Mursaleen
Khursheed J. Ansari
机构
[1] Dera Natung Government College,Department of Mathematics
[2] Gauhati University,Department of Mathematics
[3] King Abdulaziz University,Department of General Required Courses, Mathematics, Faculty of Applied Studies
[4] King Abdulaziz University,Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science
[5] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
[6] Aligarh Muslim University,Department of Mathematics
[7] King Khalid University,Department of Mathematics, College of Science
关键词
Fibonacci difference space; Schauder basis; -, ; -, ; -duals; Matrix mappings; Compact operators; Hausdorff measure of non-compactness; 46A45; 46B45; 47B07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we introduce the generalized Fibonacci difference operator F(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{F}(\mathsf{B})$\end{document} by the composition of a Fibonacci band matrix F and a triple band matrix B(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{B}(x,y,z)$\end{document} and study the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}( \mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document}. We exhibit certain topological properties, construct a Schauder basis and determine the Köthe–Toeplitz duals of the new spaces. Furthermore, we characterize certain classes of matrix mappings from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to space Y∈{ℓ∞,c0,c,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{\ell _{\infty },c_{0},c,\ell _{1},cs_{0},cs,bs\}$\end{document} and obtain the necessary and sufficient condition for a matrix operator to be compact from the spaces ℓk(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{k}(\mathsf{F}(\mathsf{B}))$\end{document} and ℓ∞(F(B))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{\infty }(\mathsf{F}(\mathsf{B}))$\end{document} to Y∈{ℓ∞,c,c0,ℓ1,cs0,cs,bs}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{Y}\in \{ \ell _{\infty }, c, c_{0}, \ell _{1},cs_{0},cs,bs\} $\end{document} using the Hausdorff measure of non-compactness.
引用
收藏
相关论文
共 50 条
  • [1] Sequence spaces derived by the triple band generalized Fibonacci difference operator
    Yaying, Taja
    Hazarika, Bipan
    Mohiuddine, S. A.
    Mursaleen, M.
    Ansari, Khursheed J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] On generalized Fibonacci difference sequence spaces and compact operators
    Yaying, Taja
    Hazarika, Bipan
    Et, Mikail
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [3] ON GENERALIZED FIBONACCI DIFFERENCE SPACE DERIVED FROM THE ABSOLUTELY p- SUMMABLE SEQUENCE SPACES
    Kilinc, Gulsen
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (05): : 903 - 925
  • [4] A Different Study on the Spaces of Generalized Fibonacci Difference bs and cs Spaces Sequence
    Yasar, Fevzi
    Kayaduman, Kuddusi
    SYMMETRY-BASEL, 2018, 10 (07):
  • [5] SOME NEW PARANORMED DIFFERENCE SEQUENCE SPACES DERIVED BY FIBONACCI NUMBERS
    Kara, Emrah Evren
    Demiriz, Serkan
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 907 - 923
  • [6] Subdivisions of the Spectra for Generalized Difference Operator over Certain Sequence Spaces
    Basar, Feyzi
    Durna, Nuh
    Yildirim, Mustafa
    THAI JOURNAL OF MATHEMATICS, 2011, 9 (02): : 285 - 295
  • [7] On ideal convergence Fibonacci difference sequence spaces
    Khan, Vakeel A.
    Rababah, Rami K. A.
    Alshlool, Kamal M. A. S.
    Abdullah, Sameera A. A.
    Ahmad, Ayaz
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [8] FIBONACCI DIFFERENCE SEQUENCE SPACES FOR MODULUS FUNCTIONS
    Raj, Kuldip
    Pandoh, Suruchi
    Jamwal, Seema
    MATEMATICHE, 2015, 70 (01): : 137 - 156
  • [9] On ideal convergence Fibonacci difference sequence spaces
    Vakeel A. Khan
    Rami K. A. Rababah
    Kamal M. A. S. Alshlool
    Sameera A. A. Abdullah
    Ayaz Ahmad
    Advances in Difference Equations, 2018
  • [10] GENERALIZED ENTIRE SEQUENCE SPACES DEFINED BY FRACTIONAL DIFFERENCE OPERATOR AND SEQUENCE OF MODULUS FUNCTIONS
    Ahmad, Naeem
    Sharma, Sunil K.
    Mohiuddine, S. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 : 63 - 72