We prove a discrete version of the Lusternik–Schnirelmann (L–S) theorem for discrete Morse functions and the recently introduced simplicial L–S category of a simplicial complex. To accomplish this, a new notion of critical object of a discrete Morse function is presented, which generalizes the usual concept of critical simplex (in the sense of R. Forman). We show that the non-existence of such critical objects guarantees the strong homotopy equivalence (in the Barmak and Minian’s sense) between the corresponding sublevel complexes. Finally, we establish that the number of critical objects of a discrete Morse function defined on K is an upper bound for the non-normalized simplicial L–S category of K.
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Lab MatMidia, BR-22453900 Rio De Janeiro, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, Lab MatMidia, BR-22453900 Rio De Janeiro, Brazil
Lewiner, T
Lopes, H
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Lab MatMidia, BR-22453900 Rio De Janeiro, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, Lab MatMidia, BR-22453900 Rio De Janeiro, Brazil
Lopes, H
Tavares, G
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Lab MatMidia, BR-22453900 Rio De Janeiro, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Matemat, Lab MatMidia, BR-22453900 Rio De Janeiro, Brazil