Strong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theorem

被引:0
|
作者
Desamparados Fernández-Ternero
Enrique Macías-Virgós
Nicholas A. Scoville
José Antonio Vilches
机构
[1] Universidad de Sevilla,Departamento de Geometría y Topología
[2] Universidade de Santiago de Compostela,Departamento de Matemáticas
[3] Ursinus College,Department of Mathematics and Computer Science
来源
关键词
Simplicial Lusternik–Schnirelmann category; Strong collapsibility; Discrete Morse theory; Strong homotopy type; 55U05; 57M15; 55M30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a discrete version of the Lusternik–Schnirelmann (L–S) theorem for discrete Morse functions and the recently introduced simplicial L–S category of a simplicial complex. To accomplish this, a new notion of critical object of a discrete Morse function is presented, which generalizes the usual concept of critical simplex (in the sense of R. Forman). We show that the non-existence of such critical objects guarantees the strong homotopy equivalence (in the Barmak and Minian’s sense) between the corresponding sublevel complexes. Finally, we establish that the number of critical objects of a discrete Morse function defined on K is an upper bound for the non-normalized simplicial L–S category of K.
引用
收藏
页码:607 / 623
页数:16
相关论文
共 34 条
  • [1] Strong Discrete Morse Theory and Simplicial L-S Category: A Discrete Version of the Lusternik-Schnirelmann Theorem
    Fernandez-Ternero, Desamparados
    Macias-Virgos, Enrique
    Scoville, Nicholas A.
    Vilches, Jose Antonio
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 63 (03) : 607 - 623
  • [2] SIMPLICIAL THEORY OF LUSTERNIK-SCHNIRELMANN CATEGORY
    COELHO, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (5-8): : 199 - 202
  • [3] LUSTERNIK-SCHNIRELMANN CATEGORY BASED ON THE DISCRETE CONLEY INDEX THEORY
    Yokoi, Katsuya
    GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (03) : 693 - 704
  • [4] ESTIMATING THE DISCRETE GEOMETRIC LUSTERNIK-SCHNIRELMANN CATEGORY
    Green, Brian
    Scoville, Nicholas A.
    Tsuruga, Mimi
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 45 (01) : 103 - 116
  • [5] MORSE THEORY AND THE LUSTERNIK-SCHNIRELMANN CATEGORY OF QUATERNIONIC GRASSMANNIANS
    Macias-Virgos, Enrique
    Jose Pereira-Saez, Maria
    Tanre, Daniel
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (02) : 441 - 449
  • [6] Morse-Bott theory on posets and a homological Lusternik-Schnirelmann theorem
    Fernandez-Ternero, D.
    Macias-Virgos, E.
    Mosquera-Lois, D.
    Vilches, J. A.
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2024, 16 (03) : 323 - 346
  • [7] Discrete Morse theory for weighted simplicial complexes
    Wu, Chengyuan
    Ren, Shiquan
    Wu, Jie
    Xia, Kelin
    TOPOLOGY AND ITS APPLICATIONS, 2020, 270
  • [8] Discrete Morse theory, simplicial nonpositive curvature, and simplicial collapsibility
    Lazar, Ioana-Claudia
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2012, 17 (01): : 58 - 69
  • [9] Simplicial collapsibility, discrete Morse theory, and the geometry of nonpositively curved simplicial complexes
    Katherine Crowley
    Geometriae Dedicata, 2008, 133 : 35 - 50
  • [10] Simplicial collapsibility, discrete Morse theory, and the geometry of nonpositively curved simplicial complexes
    Crowley, Katherine
    GEOMETRIAE DEDICATA, 2008, 133 (01) : 35 - 50